
Sequencing Operator Counts with State-Space Search

Wesley L. Kaizer; André G. Pereira; Marcus Ritt
Federal University of Rio Grande do Sul, Brazil

Sequencing Operator Counts with State-Space Search

Wesley L. Kaizer; André G. Pereira; Marcus Ritt
Federal University of Rio Grande do Sul, Brazil

ABSTRACT

A search algorithm with an admissible heuristic function is the most common approach to
optimally solve classical planning tasks. Recently [1] introduced the solver OpSeq using
Logic-Based Benders Decomposition to solve planning tasks optimally. In this approach, the
master problem is an integer program derived from the operator-counting framework that
generates operator counts, i.e., an assignment of integer counts for each task operator. Then,
the operator counts sequencing subproblem verifies if a plan satisfying these operator
counts exists, or generates a necessary violated constraint to strengthen the master problem.
In OpSeq the subproblem is solved by a SAT solver.
In this paper we show that operator counts sequencing can be better solved by state-
space search. We introduce OpSearch, an A∗-based algorithm to solve the operator counts
sequencing subproblem: it either finds an optimal plan, or uses the frontier of the search
to derive a violated constraint. We show that using a standard search framework has two
advantages: i) search scales better than a SAT-based approach for solving the operator
counts sequencing, ii) explicit information in the search frontier can be used to derive
stronger constraints.
We present results on the IPC-2011 benchmarks showing that this approach solves more
planning tasks, using less memory. On tasks solved by both methods OpSearch usually
requires to solve fewer operator counts sequencing problems than OpSeq , evidencing the
stronger constraints generated by OpSearch.

INTRODUCTION

[1] introduced a novel approach for cost-optimal planning, recognizing that the primal so-
lution of the operator-counting linear program contains useful information that can be
understood as a possible incomplete and unordered plan. This approach interprets the
operator-counting framework beyond its primary use as a heuristic function and decom-
poses the process of finding solutions to a planning task into two independent but related
subproblems, in a similar way to Logic-Based Benders Decomposition [2]. There is a master
problem and a combinatorial subproblem used to explain the infeasibility of a solution of
the master problem. The master problem is modeled as an integer program, corresponding
to an operator-counting heuristic. The subproblem is modeled as a propositional satisfi-
ability (SAT) problem encoding the planning task and the operator counts obtained from
the solution of the master. A SAT solver is then used to sequence the operator counts,
i.e., to check if a plan with these counts exists. If there is no plan with the given operator
counts, the SAT solver returns a violated constraint for the master problem.
In this paper, we solve the operator counts sequencing subproblem using heuristic search
instead of a SAT-based formulation. This new approach is based on an A∗ search that
employs information unavailable to SAT solvers, such as the f -value of search nodes and the
explicit structure of the search graph. We present a novel strategy to construct a violated
constraint during the expansion of the search graph by considering the frontier of the
search. We show that this strategy generates an admissible operator-counting constraint.
We show experimentally that the resulting algorithm OpSearch has better coverage and
less computational requirements than a SAT-based approach and can generate smaller
and more informative explanations of infeasibility, as shown by the total number of solved
subproblems required to solve planning tasks. We believe this approach is relevant because
it opens new research directions towards specialized operator counts sequencing methods
based on well-known classical planning technology.

PLANNING USING LOGIC-BASED BENDERS

DECOMPOSITION

Usually in classical planning, only the objective function value of the operator-counting
heuristic guides the search. However, variables Yo in the primal solution of IPC contains
useful information. This suggests a novel approach to solve planning tasks optimally.
[1] propose a Logic-Based Benders Decomposition that decomposes the process of solving
planning tasks into two related problems: a master problem that solves IPC – a relaxation
of the original planning task, which generates operator counts Cs, and a subproblem that
tries to sequence Cs, constructing a violated constraint on failure.
The main idea consists of incrementally strengthening the master problem relaxation with
some learned knowledge about the infeasibility of its current solution. These constraints
should be as informative as possible to decrease the number of total iterations between
master and the subproblem. The process stops when the Branch and Cut algorithm (BC)
from master proves the optimality of the current incumbent plan. This decomposition es-
tablishes an interface between operator-counting heuristics and operator counts sequencing
procedures.

Master Problem Subproblem

Operator Counting
IP Model

Operator Sequencing
Model

Operator Counts

Generalized Landmarks

PROPOSED APPROACH: OPSEARCH

We propose a solver OpSearch, which uses the A∗ search algorithm to solve the operator
counts sequencing subproblem. Given an initial operator counts Cs0, it returns a plan
π if Cs0 is sequencable, or a violated condition as a generalized landmark constraint L,
otherwise. The presence of potentially useful information in the search graph, such as f -
values, motivates its use as base for an alternative algorithm. This approach could generate
smaller and more informed constraints and eliminating irrelevant parts of constraints can
significantly decrease solving time of an integer program.
Our approach follows the main idea of planning using Logic-Based Benders Decomposition.
We initiate the process using a BC to solve the IPC. If BC finds an integer solution it calls
OpSearch and we try to sequence the corresponding operator counts. If BC finds a relaxed
solution we obtain a valid operator counts by rounding up the primal solution values to the
nearest integers, and sequencing only if its cardinality and objective value are within 20%
of the linear count. If the operator counts provided is sequencable OpSearch informs the
BC that a new solution has been found. This process continues until BC proves that one
of the found plans is optimal.

CONSTRAINT GENERATION STRATEGY

We now explore the situation when vo /∈ vars(s) ∧ c(o) > 0 and s(vo) = 0 to derive
some violated condition on the current operator counts. This condition is modeled as a
generalized landmark constraint with bounds literals for operator o and can be interpreted
as follows: if we had one more instance of o, we could further expand a state, that could
possibly reach a goal state with optimal cost. Additionally, we can use other information
available during A∗ to strengthen the generated constraints, such as the f -value of state s,
since it is an estimate of the plan cost through s.
Next we present the strategy to generate violated constraints from non-sequencable operator
counts. It incrementally generates bounds literals during A∗ search to compose the final
learned generalized landmark constraint L, that includes at most one bounds literal for each
operator. The strategy returns bounds for operators that currently have count 0 but might
generate new states with an f -value at most fmax, the objective value of the relaxation of
the node in the BC tree that called the sequencing subproblem. State s denotes a state
expanded by A∗ and s′ is a generated one.

L = { [Yo ≥ Cs0(o) + 1] | ∃s o−→ s′ : f (s′) ≤ fmax∧
((vo /∈ vars(s) ∧ c(o) > 0) ∨ s(vo) = 0)}

RESULTS

The following tables show results for OpSeq and OpSearch. Best results are highlighted.
Column C presents the coverage; S the total number of sequencing calls; T̄t the mean total
solving time in seconds; M the mean memory usage in MB; and u the mean percentage of
operators included in the generated constraints.

OpSeq OpSearch

C 63 73
S 121202 99437
T̄t 1783 1720
M̄ 865 367
ū 20 6

OpSeq hblind hLMCut hOC h∗

S 29106 25059 13304 7215 3214
T̄t 37 10 11 39 13
M̄ 95 82 82 81 234
ū 18 18 11 10 8
C 169 191 195 200 241

These results show that OpSearch is better than OpSeq since it solves more tasks, solves
less subproblems, uses less memory and generate smaller constraints. Also, we see that,
as a more informed heuristic is used by OpSearch, the number of subproblems solved, the
memory usage and the size of the generated constraints decrease and the number of solved
tasks increases.

CONCLUSIONS

In this work we introduced OpSearch, a technique inspired by Logic-Based Benders De-
composition that uses an A∗-based algorithm to solve the problem of sequencing operator
counts. As main results we showed that heuristic search is able to sequence operator
counts or to generate admissible constraints in the form of generalized landmarks, and that
it can perform better than OpSeq , a SAT-based approach to sequencing, solving fewer
subproblems and presenting a higher coverage. We also presented results indicating that
an approach based on A∗ can scale better than OpSeq in terms of overall memory usage.

REFERENCES

[1] Toby O Davies et al. “Sequencing operator counts”. In: International Conference on Automated Plan-
ning and Scheduling. 2015, pp. 61–69.

[2] John N Hooker and Greger Ottosson. “Logic-based Benders decomposition”. In: Mathematical Program-
ming 96.1 (2003), pp. 33–60.


