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Figure 6: Full trajectory statistics. Total number of runs is 61; ; x, y axes in meters. All x-axes plot distance to nearest pedestrian; (a) plots means ± 1 standard deviation of
algorithm and human; (b) appends plot (a) with dmin threshold, the closest distance two humans passed in the dataset. Inspection of region left of dmin shows numerous instances
of DWA, MC 1e5, and SARL; (c) normalizes algorithm path length with human path length. E.g., values below dr = dh mean the robot moved to goal more directly than human.

µ(s) %s<0.3 %s<0.21 µ(dr) %dr/dh>1.25 max(dr/dh) µ(t) µ(max(⇢))
Human .89 ± .1m 5% 5% 25.6 ± 6.2m NA NA NA .22±.15
IGP Full .55 ± .17m 15% 8% 22.6 ± 5.6m 3% 1.4 .2 ± .3s .23± .12
IGP Diag .57 ± .2m 30% 16% 25.0 ± 5.8m 0% 1.2 .11 ± .07s .43± .4
IGP Lin .55 ± .2m 26% 15% 26.3 ± 6.5m 16% 1.4 .12 ± .1s .46 ± .9
DWA .4 ± .15m 50% 32% 31.9 ± 8.3m 44% 2.2 .1 ± .03s .23 ± .1
MC 1e5 .4 ± .17m 47% 31% 32.7 ± 8.6m 57% 2.1 4.7 ± 3.2s .2 ± .3
SARL* .36 ± .12m 47% 25% 8.9 ± 2.7m 0% 1.23 1.4 ± .2s .17 ± .1

*SARL was trained in five different environments; we report the best performing network.
Table 2: Full trajectory metrics. For each run, distance to nearest pedestrian is stored as s and µ(s) is the mean; %s<0.3, %s<0.21 are the percent of runs that s < 0.3m, 0.21m;
µ(dr) is the mean of the robot path length dr over all runs; %dr/dh>1.25 is percent of times that dr was 1.25 times the human path length dh; µ(t) is the mean time of all
replanning steps; and maxruns(⇢) is the maximum density observed. Density is computed in a 3m radius circle centered on robot position (in people/m2).

ter long agent runs. For example, if agent 1’s full trajectory
was 30 meters long, we would have 3 partial trajectories.
Partial trajectory experiments provide focused examination
of an algorithm’s ability to navigate through congestion in a
safe and efficient manner. Full trajectory runs (the entire run
of an agent) provide an additional level of information: they
quantify how well the planner transitions between a variety
of scenarios—strong interaction (head on avoidance, orthog-
onal crossing, following, being followed, etc), light interac-
tion (a nearby person) and no interaction (straight line runs),
all of which may occur in a single full trajectory run. We
identified 293 partial trajectories and tested 181 (discarding
112 for calibration reasons). We tested 61 of the 150 full tra-
jectories (discarding 89 trajectories for calibration reasons).

Since all algorithms replan from scratch at each step, long
horizon planning (full trajectory) is straightforward: sim-
ply allow the goal at each time step to be the next step in
the human’s trajectory. We do not address the intricacies of
combining long and short horizon planning here, and we are
aware that providing this much human information can po-
tentially bias the robot to over-perform. We guard against
this potential confound with the partial trajectory studies
(where only start and goal is provided). Also, performance
in the full trajectory tests varies significantly across 6 differ-
ent approaches.

Rationale for test algorithms We collected safety and
path length data on humans, foIGP (IGP Full), foIGP us-
ing the diagonals of Equation 5.1 (IGP Diag), IGP with a
linear prediction model for the agents (IGP Lin), the “dy-
namic window approach” (DWA, (Fox, Burgard, and Thrun
1997), IGP using Monte Carlo optimization (MC 1e5, e.g.,
draw 105 random samples and choose the sample with
largest Equation 6.1 value), and “socially aware reinforce-
ment learning” (SARL, (Chen et al. 2019).

Each algorithm was chosen to explore a certain aspect
of the performance space. We collected data on humans to
serve as an upper bound on performance. We tested data
on DWA for two reasons: First, this algorithm is widely de-
ployed; in particular, it is the default navigation algorithm in
ROS (see http://wiki.ros.org/base local planner). Thus it is
a useful benchmark for many practitioners. Second, DWA is
susceptible to known crowd navigation failure modes, such
as freezing robot behavior (Trautman and Krause 2010). We
chose MC 1e5 to test whether foIGP’s optimization routine
achieves better performance. We chose IGP Lin to demon-
strate that our inference approach can be used with any
Gaussian mixture model (e.g., physics or machine learning
based). We tested SARL because it outperforms all existing
deep reinforcement learning approaches.

Finally, we trained SARL in 5 different environments.
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the human’s trajectory. We do not address the intricacies of
combining long and short horizon planning here, and we are
aware that providing this much human information can po-
tentially bias the robot to over-perform. We guard against
this potential confound with the partial trajectory studies
(where only start and goal is provided). Also, performance
in the full trajectory tests varies significantly across 6 differ-
ent approaches.

Rationale for test algorithms We collected safety and
path length data on humans, foIGP (IGP Full), foIGP us-
ing the diagonals of Equation 5.1 (IGP Diag), IGP with a
linear prediction model for the agents (IGP Lin), the “dy-
namic window approach” (DWA, (Fox, Burgard, and Thrun
1997), IGP using Monte Carlo optimization (MC 1e5, e.g.,
draw 105 random samples and choose the sample with
largest Equation 6.1 value), and “socially aware reinforce-
ment learning” (SARL, (Chen et al. 2019).

Each algorithm was chosen to explore a certain aspect
of the performance space. We collected data on humans to
serve as an upper bound on performance. We tested data
on DWA for two reasons: First, this algorithm is widely de-
ployed; in particular, it is the default navigation algorithm in
ROS (see http://wiki.ros.org/base local planner). Thus it is
a useful benchmark for many practitioners. Second, DWA is
susceptible to known crowd navigation failure modes, such
as freezing robot behavior (Trautman and Krause 2010). We
chose MC 1e5 to test whether foIGP’s optimization routine
achieves better performance. We chose IGP Lin to demon-
strate that our inference approach can be used with any
Gaussian mixture model (e.g., physics or machine learning
based). We tested SARL because it outperforms all existing
deep reinforcement learning approaches.
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Fig. 2. (a,b) Empirical evidence of joint collision avoidance: blue circles (representing current position) over gray lines are pedestrians moving down,
and black circles are the area of interest. In (a), the blue pedestrians have not yet seen the green person; their projected trajectories (in gray) are very narrow.
In (b), green dots with red encircling are current position of the pedestrian moving up, and all of the pedestrians have adjusted their trajectories to create
space—notice how wide the gray prediction has become. It is this joint collision avoidance behavior which we capture in this paper. (c-e) Illustration

of FRP. Dynamic crowd agents in red traveling downward, robot we are trying to control in blue. The multiple dots indicate multiple points along one
trajectory. (c) Uncertainty explosion due to uncorrected prediction. (d) Even with perfect prediction, room for robot navigation may not exist. (e) Modeling
cooperative collision avoidance remedies the FRP.

B. Approaches for solving the FRP

In order to fix the FRP, one state of the art approach
[6], called partially closed loop receding horizon control
(PCLRHC), anticipates the observations (effectively hallu-
cinating that a certain measurement sequence of the entire
trajectory sequence has already taken place at time t < T );
ultimately, the approach is motivated by the assumption that
the culprit of the FRP is an uncertainty explosion, illustrated
in Figure 2(c). The claim is that if you can control the
covariance, then you can keep the value of J(f (R)|z1:t) low
for some (short path length) trajectories f (R), and thus solve
the FRP (other approaches, which incorporate more accurate
agent modeling, are similar in motivation to PCLRHC, since
better dynamic models would reduce predictive covariance as
well).

However, in severely crowded environments, even the
optimal solution to the MDP suffers from freezing robot
behavior. This is because we can lower bound the optimal
MDP cost by

Ez1:T [min
f (R)

J(f (R)|z1:T )], (II.4)

which is the expected cost in the case of perfect prediction
(i.e., knowing the future). Unfortunately, in dense environ-
ments, such as those shown in Figures 2(d) and 2(a), this
lower bound can still be prohibitively expensive, and lead
even optimal planners (such as the MDP) to exhibit freezing
robot actions. It follows that suboptimal methods, which
work at improving the prediction or reducing the covariance,
cannot be expected to solve the FRP.

This analysis suggests that the planning problem as in-
troduced above is ill-posed. We thus revisit our probability

density,

p(f (1), . . . , f (n) | z1:t), (II.5)

and remark that a crucial element is missing—the agent mo-
tion model is agnostic of the navigating robot. One solution
is thus immediately apparent: include an interaction between
the robots and the agents (in particular, a joint collision
avoidance) in order to lower the MDP cost in equation II.4.
We additionally remark that the illustration in Figure 2(b), the
crowd experiments catalogued in the research of [8], [9], [7],
the multi-robot coordination theorems of [26], [25], and the
tracking experiments of [18], [19], [16], all corroborate the
argument that autonomous dynamic agents utilize joint col-
lision avoidance behaviors for successful crowd navigation.
We thus consider methods to incorporate such an interaction.

A naive approach to modeling interaction would be to
model a conditional density p(f | z1:t, f (R)), that encodes
assumptions on how the agents react to the robot’s actions,
i.e., the idea that all agents will “give way” to the robot’s
trajectory. The problem with this approach is that it implicitly
assumes that the robot has the ability to control the crowd.
Thus, this approach would not only create an obnoxious
robot, but an overaggressive and potentially dangerous one
as well. This method is unsuitable for crowded situations.

The other alternative, which we advocate in this paper,
is to consider a robot action as an agent action (i.e., the
robot is modeled as one of the agents) and to model a joint
distribution describing their interaction:

p(f (R), f |, z1:t). (II.6)

This distribution encodes the idea of cooperative planning,
and joint collision avoidance. Planning then corresponds to
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However, in severely crowded environments, even the
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even optimal planners (such as the MDP) to exhibit freezing
robot actions. It follows that suboptimal methods, which
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and remark that a crucial element is missing—the agent mo-
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the robots and the agents (in particular, a joint collision
avoidance) in order to lower the MDP cost in equation II.4.
We additionally remark that the illustration in Figure 2(b), the
crowd experiments catalogued in the research of [8], [9], [7],
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assumes that the robot has the ability to control the crowd.
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Fig. 5. (a) Unsafe runs for the noncooperative planner (called mgGP, in magenta) and mgIGP (in blue). Overall, the noncooperative planner fails more
than 3 times as often as the cooperative planner. At extremely high densities (above 0.8 people/m2, when patrons are standing nearly shoulder to shoulder)
all planners consistently fail. Anecdotally, it is extremely hard to teleoperate a robot at these densities. (b) Unsafe runs for the noncooperative planner and
IGP (in black). Even without goal based prediction, the cooperative planner is more than twice as safe as the noncooperative planner.

tracks detailed in the appendix to [30]; those velocity profiles
with an unsafe probability of collision are discarded (we
tuned this threshold to be maximally aggressive yet always
safe). The safest profile with the highest velocity is chosen.
This approach is similar to [29], and is always safe.

The motion profile of this planner was purposefully chosen
to be as straightforward as possible (only forward motion)
in order to study what could be achieved with the simplest
of implementations. Importantly, the planner of V-B.1 is a
generalization of this planner—i.e., all motions are allowed.

5) Human Teleoperation: Human teleoperation was con-
ducted at the discretion of the teleoperator: we allowed the
operator to maintain as much line of sight as desired. In
all, six teleoperators controlled the robot, for a total of 85
runs. The data produced served as an “upper bound” of
dense crowd navigation performance: at all densities, the
performance of the human teleoperator exceeded that of the
autonomous navigation algorithm.

C. Description of Untested Navigation Algorithms

We survey existing navigation approaches and explain why
our test algorithms are sufficiently representative. Inevitable
collision states (ICS) are limited to deterministic settings, and
so are inapplicable. Probabilistic ICS ([35]) is designed to
handle predictive uncertainty. However, Probabilistic ICS is a
special case of [14], and so V-B.1 (our noncooperative plan-
ner) is representative. Velocity obstacles (VOs) are limited
to deterministic scenarios, and thus inappropriate. In [36],
VOs are generalized for noise. However, Probabilistic VOs
use linear extrapolation, and so V-B.1 is representative. We
tested reciprocal velocity obstacles (RVOs, [37]). However,
noisy pedestrian tracks caused RVO to behave erratically
(unresponsive to a single person walking directly at the
robot), and RVO assumes all agents choose velocities in
a pre-specified manner, which is untrue for humans. Fur-
thermore, we adjusted the value of the collision cone to

be less aggressive; nevertheless, RVO still struggled with
natural human environments. Although other modifications
may indeed make this algorithm successful, for the purposes
of this experiment, RVO was deemed unsuitable. Potential
fields are combined with RRTs to find the minimal cost
robot trajectory in [17]. The primary difference between this
algorithm and V-B.1 is that our cost field is spherical (rather
than ellipsoidal), so V-B.1 is representative.

We point out that the work of [25] and [23] are likely
the most compelling alternatives to mgIGP. In particular,
[25] uses a joint collision avoidance feature in their inverse
reinforcement learning representation, and they learn the
weight of that feature from captured human data. However,
their experiments involve only a single person and a single
robot, and, in their own words, “in more densely populated
environments . . . it is not feasible to compute all topological
variants”. In other words, their current implementation is
unsuitable for real time implementation in dense crowds.

VI. EXPERIMENTAL RESULTS: QUANTITATIVE STUDIES

In [38] numerous metrics for evaluating human-robot in-
teraction are presented. Importantly, safety is pinpointed as
the most important. Accordingly, we evaluate the safety and
efficiency of the algorithms of Section V-B.

A. Robot Safety in Dense Human Crowds
We discuss the human density metric. First, we have normal-
ized to values between 0 and 1—thus, the highest density
(1 person/m2) is a shoulder to shoulder crowd. Further,
patrons rarely stand still; this constant motion increases
crowd complexity. Anecdotally, humans found crowd densi-
ties above 0.8 people/m2 to be extremely difficult to teleoper-
ate through, and densities above 0.4 people/m2 challenging.

We define safety as a binary variable: either the robot
was able to navigate through the crowd without collision
or it was not. Obviously, we could not allow the robot to
collide with either walls or people, and so a protocol for

Figure 2: Decoupling safety decrement.

sion avoidance (decoupled robots and agents), complexity is NP-Hard [Canny and Reif(1987)];

for continuous time Bayesian networks (similar to crowd navigation), complexity is also NP-

hard [Sturlaugson and Sheppard(2014)]. This complexity is easily visualized: for a planar dis-

cretized action space of nt agents, each agent can move in 8 directions at each time step. For

prediction horizon T , then, the system has O(8
ntT ) states.

Interestingly, you also see two state of the art DRL planners exhibit either overaggressive-ness or

overcautious-ness; we tried to tune SARL to the peculiarities of our test suite, but it made no

performance di↵erence.

Finally, you can see as we add various improvements to our interactive model, the safety-e�ciency

ellipse moves progressively closer to human performance (soIGP models human-human and robot-

human interaction (“second order IGP”), foIGP models only robot-human interaction (“first order”

IGP ignores human-human interaction), and soIGP lin is soIGP with a linear prediction model).

To me, the lesson here is twofold: 1) modeling robot agent interdependence is a crucial performance

factor for any real world robot (unless you can guarantee that nobody will interact with the robot)

and 2) its really hard to balance safety and e�ciency as well as a human. That is, it is pleasantly

surprising that humans would exhibit such balanced behavior against such reductionist metrics as

safety and e�ciency.

(It’s worth mentioning that the self driving car community has seen a surge of interest in merging

and intersections in the last few years; I don’t think this is a coincidence. Based on the conversa-

tions I?ve had, the community (from about 2010-2017) was reluctant to talk about coupled models

(if we have to use coupled models, computation becomes non-convex ), probably because they were

focused on areas that didn’t involve coupling (even tra�c jams are rarely coupled). As the self

driving car industry moved into more unconstrained environments, it became clear that basic

functionalities like merging was indeed a coupled process. I realize this is an over generalization of

the industry—Cruise has been showing pretty demanding interaction events for a few years now.)

Large safety decrement at all densities

Decoupled Models: Suboptimal 
at any Density

[fR, f ]⇤ = argmax
fR,f

p(fR, f | z̄1:t)

u(t+ 1) = fR
⇤
(t+ 1)

The Necessity of Coupled Models
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<latexit sha1_base64="ruFEBLr3N4b4SI1g1F5oSOqM6VU="></latexit>

! Provide statistically valid interaction function PIGP
¬

! Provide a real time locally optimal solver

<latexit sha1_base64="thn/57XmCLriaYEJyA4S2ezTm3Y=">AAADQHicbVHLbtNAFB2bVwmvFBYs2AxUSK0EsVMpTcqqogixQQqItJUSKxqPr51R52FmxlEsK1/AN/Az/AV/wA51y4qJEypMuavrc+/xuWdOnHNmbBh+9/xr12/cvLV1u3Xn7r37D9rbD0+MKjSFEVVc6bOYGOBMwsgyy+Es10BEzOE0Pj9ezU/noA1T8pMtc4gEySRLGSXWQdP2l0kMGZMVBWlBL1sTqZhM3MfEwsLGaXWstOKc6PLVEr9nRqhkpZXhlMOCxYwzW2IOJDHYKkz2sHJqJMs0GMPmgJXG8RqkpHCShcG7bz8O97BWsbK4NQGZ/BGftnfCTlgXvtp0N80O2tRwuu19nSSKFsLxKSfGjLthbqOKaMsoB+emMJATek4yGLtWEgEmqupXW+LnDklw6i5MlbS4Rv9mVEQYU4rYbQpiZ+bf2Qr832xc2HQQVUzmhQVJ10JpwVcPtIoAJ0wDtbx0DaGauVsxnRFNqHuEpopIUu1uTppOzDyrnbyYub9pDWlULdaeGmQQ+Qw+N6mCyDKqbL0dq0WTEIyMOyDIwd3Rsdrl5daDN1rlbjWgSqagnSEwQQYSNKMva4+BcC6UWbauVB3oYa/X6w8u43OBHg4ODvrdS+Rkv9PtdcIP+ztHrzfRbqEn6BnaRV3UR0foHRqiEaLownvsYe+p/83/4f/0L9arvrfhPEKN8n/9BkMaDRc=</latexit>

Corollary: Mismodeling flexibility leads to a) overaggressive or b)
overcautious (FRP) robot


