Multiple-Environment Markov Decision Processes: Efficient Analysis and Applications K. Chatterjee¹, M. Chmelík², D. Karkhanis³, P. Novotný⁴, A. Royer¹ ¹IST Austria, ²Google LLC, ³IIT Bombay, ⁴Masaryk University

Institute of Science and Technology

MEMDPs

Multi-Environment Markov Decision Processes (MEMDPS) are an ideal tool for modeling families of MDPs with a similar transition structure, as can be encountered in many real-life applications (e.g., *recommender systems*)

Formally, a MEMDP is a tuple (*I*, *S*, *A*, δ , *r*, *s*, λ), where:

• *I*, is a finite set of environments;

Optimized Solvers

We leverage these three properties to optimize two classic POMDP solvers for MEMDPs applications:

PBVI^[2]: Leveraging the MEMDP structure helps with selecting a restricted set of beliefs to perform value iteration on, as well as for linear time belief updates. We call this variant **Sparse PBVI** (SPBVI)

- *S*, is a finite set of control states;
- *A*, is a finite alphabet of actions;
- $\{\delta_i\}_{i \in I}$, is a collection of probabilistic transition functions, one for every environment $i \in I$
- $\{r_i\}_{i \in I}$, is a set of reward functions
- $s_0 \in S$, is the initial state; and
- $\lambda \in \mathcal{D}(I)$, is the initial distribution over the environments

POMCP^[3]: The sparse transition of MEMDPs can be readily applied. Building on this, we propose two variants:

- **POMCP-ex:** Instead of estimating belief updates via Monte Carlo sampling, we can *perform efficient exact* belief updates in linear time in a MEMDP.
- **PAMCP**: We use caching to retain past histories in future executions of the solver. This allows us to efficiently solve a stream of input queries while benefiting from past environment information.

Applications and Experiments

We explore several real-life applications modeled as MEMDPs, and explore how the proposed MEMDP-specific solvers performed compared to their standard counterpart.

MEMDP, and its POMDP equivalent (2 products, 2 users)

Solving MEMDPs efficiently

A MEMDP can be converted to a Partially-Observable MDP (**POMDP**) by considering the cross-product *I* **X** *S* as the new set of states. Hence standard POMDPs solvers apply to this framework, however these are often suboptimal.

Instead, we show that modeling and incorporating the specific nature of MEMDPS into these solvers allow for great computational gains, which can be summarized as the following three improvements:

1. Sparse transitions: The partially-observable (PO) feature (the environment I) is sampled only once, at initialization, and then kept constant. The memory required to store the

Recommender systems benefit from being tailored to different user profiles. These can be modeled as different environments of a MEMDP, sharing the same transition structure (i.e., same products to recommend). Both retrieval accuracy and speed matter in these scenarios.

(synthetic)	MDP	SPBVI	РОМСР	POMCP-ex	PAMCP	PAMCP-ex
Accuracy	0.12 ± 0.03	-	0.64 ± 0.27	0.77 ± 0.07	0.68 ± 0.24	0.75 ± 0.08
Env. prediction	-	-	0.79 ± 0.33	0.96 ± 0.04	0.85 ± 0.30	0.94 ± 0.06
Runtime	5h30mn	OOM	9mn36s	14s	14s	36s

(Foodmart)	MDP	SPBVI	РОМСР	POMCP-ex
Accuracy	0.61 ± 0.14	0.62 ± 0.14	0.62 ± 0.14	0.62 ± 0.14
Precision	0.74 ± 0.09	-	0.78 ± 0.07	0.78 ± 0.08
Env. prediction	-	0.60 ± 0.31	0.54 ± 0.35	0.53 ± 0.36
Runtime	11mn57s	12mn 38s	46s	23s

The parametric Hallway maze problem^[4] consists in solving a maze where the agent has a certain (unknown) probability of "skidding", which we capture as different environments of a MEMDP.

transition function is thus only $O(|S|^2 \cdot |I| \cdot |A|)$ => Memory efficient (Save up a multiplicative factor |I|)

2. Faster belief updates: In a MEMDP, the uncertainty lies on the environment, rather than on states. Furthermore, as noted before, the PO features are static, once sampled. => Computationally efficient (belief update is O(|I|))

3. Monotonic average belief entropy: We show that, in a MEMDP, the expected change of entropy of the updated belief is always bounded. This can be used in POMDPs solver that rely on this signal as a guiding heuristic^[1].

POMDP solver average runtime: 1479.35 MEMDP solver average runtime: 30.15 s

[1] Exact and approximate algorithms for partially-observable Markov decision processes, Cassandra, 1998

[2] Point-based value iteration: An anytime algorithm for POMDPs, *Pineau et al, IJCAI 2003* [3] Monte-Carlo Planning in Large POMDPs, Silver and Veness, NeurIPS 2010 [4] Parameter-independent strategies for PMDPs via POMDPs, Arming et al, QEST 2018