
MEMDPs
Multi-Environment Markov Decision Processes
(MEMDPS) are an ideal tool for modeling families of MDPs
with a similar transition structure, as can be encountered in
many real-life applications (e.g., recommender systems)

Formally, a MEMDP is a tuple (I, S, A, δ, r, s
0
, λ), where:

• I, is a finite set of environments;
• S, is a finite set of control states;
• A, is a finite alphabet of actions;
• {δ

i
 }

i ∈ I
 , is a collection of probabilistic transition functions,

one for every environment i ∈ I

• {r
i
}

i∈I , is a set of reward functions
• s

0
 ∈ S, is the initial state; and

• λ ∈ D(I), is the initial distribution over the environments

Multiple-Environment Markov Decision
Processes: Efficient Analysis and Applications
K. Chatterjee1, M. Chmelík2, D. Karkhanis3, P. Novotný4, A. Royer1

1IST Austria, 2Google LLC, 3IIT Bombay, 4Masaryk University

Applications and Experiments
We explore several real-life applications modeled as
MEMDPs, and explore how the proposed MEMDP-specific
solvers performed compared to their standard counterpart.

Recommender systems benefit from being tailored to
different user profiles. These can be modeled as different
environments of a MEMDP, sharing the same transition
structure (i.e., same products to recommend). Both
retrieval accuracy and speed matter in these scenarios.

The parametric Hallway maze problem[4] consists in
solving a maze where the agent has a certain (unknown)
probability of “skidding”, which we capture as different
environments of a MEMDP.

Solving MEMDPs efficiently
A MEMDP can be converted to a Partially-Observable MDP
(POMDP) by considering the cross-product I x S as the new
set of states. Hence standard POMDPs solvers apply to this
framework, however these are often suboptimal.

Instead, we show that modeling and incorporating the
specific nature of MEMDPS into these solvers allow for great
computational gains, which can be summarized as the
following three improvements:

1. Sparse transitions: The partially-observable (PO) feature
(the environment I) is sampled only once, at initialization, and
then kept constant. The memory required to store the
transition function is thus only O (∣S∣2 ⋅ ∣I∣ ⋅ ∣A∣)
=> Memory efficient (Save up a multiplicative factor∣I∣)

2. Faster belief updates: In a MEMDP, the uncertainty lies
on the environment, rather than on states. Furthermore, as
noted before, the PO features are static, once sampled.
=> Computationally efficient (belief update is O (∣I∣))

3. Monotonic average belief entropy: We show that, in a
MEMDP, the expected change of entropy of the updated
belief is always bounded. This can be used in POMDPs
solver that rely on this signal as a guiding heuristic[1].

Optimized Solvers
We leverage these three properties to optimize two classic
POMDP solvers for MEMDPs applications:

PBVI[2]: Leveraging the MEMDP structure helps with
selecting a restricted set of beliefs to perform value
iteration on, as well as for linear time belief updates. We
call this variant Sparse PBVI (SPBVI)

POMCP[3]: The sparse transition of MEMDPs can be
readily applied. Building on this, we propose two variants:

- POMCP-ex: Instead of estimating belief updates via
Monte Carlo sampling, we can perform efficient exact
belief updates in linear time in a MEMDP.

- PAMCP: We use caching to retain past histories in
future executions of the solver. This allows us to
efficiently solve a stream of input queries while
benefiting from past environment information.

• I, is a finite set of environments;
• S, is a finite set of control states;
• A, is a finite alphabet of actions;
• {δ

i
 }

i ∈ I
 , is a collection of probabilistic transition

functions, one for every environment i ∈ I

• {r
i
}

i∈I , is a set of reward functions
• s

0
 ∈ S, is the initial state; and

• λ ∈ D(I), is the initial distribution over the environments

Example: User-aware recommender, modeled as a
MEMDP, and its POMDP equivalent (2 products, 2 users)

(a) MEMDP

s0

p1

p2

p1p
2

p2p
1

s0

p1

p2

p1p
2

p2p
1

p1

p2

p1p
2

p1p
2

(b) POMDP

[1] Exact and approximate algorithms for partially-observable Markov decision processes,
Cassandra, 1998
[2] Point-based value iteration: An anytime algorithm for POMDPs, Pineau et al, IJCAI 2003
[3] Monte-Carlo Planning in Large POMDPs, Silver and Veness, NeurIPS 2010
[4] Parameter-independent strategies for PMDPs via POMDPs, Arming et al, QEST 2018

(synthetic) MDP SPBVI POMCP POMCP-ex PAMCP PAMCP-ex

Accuracy 0.12 ± 0.03 - 0.64 ± 0.27 0.77 ± 0.07 0.68 ± 0.24 0.75 ± 0.08

Env. prediction - - 0.79 ± 0.33 0.96 ± 0.04 0.85 ± 0.30 0.94 ± 0.06

Runtime 5h30mn OOM 9mn36s 14s 14s 36s

(Foodmart) MDP SPBVI POMCP POMCP-ex

Accuracy 0.61 ± 0.14 0.62 ± 0.14 0.62 ± 0.14 0.62 ± 0.14

Precision 0.74 ± 0.09 - 0.78 ± 0.07 0.78 ± 0.08

Env. prediction - 0.60 ± 0.31 0.54 ± 0.35 0.53 ± 0.36

Runtime 11mn57s 12mn 38s 46s 23s

POMDP solver average runtime: 1479.35
MEMDP solver average runtime: 30.15 s

