
MEMDPs
Multi-Environment Markov Decision Processes 
(MEMDPS) are an ideal tool for modeling families of MDPs 
with a similar transition structure, as can be encountered in 
many real-life applications (e.g., recommender systems) 

Formally, a MEMDP is a tuple (I, S, A, δ, r, s
0
, λ), where:

• I, is a finite set of environments;
• S, is a finite set of control states;
• A, is a finite alphabet of actions;
• {δ

i
 }

i ∈ I
 , is a collection of probabilistic transition functions, 

one for every environment i ∈ I

• {r
i
}

i∈I , is a set of reward functions
• s

0
 ∈ S, is the initial state; and

• λ ∈ D(I), is the initial distribution over the environments
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Applications and Experiments
We explore several real-life applications modeled as 
MEMDPs, and explore how the proposed MEMDP-specific 
solvers performed compared to their standard counterpart.

Recommender systems benefit from being tailored to 
different user profiles. These can be modeled as different 
environments of a MEMDP, sharing the same transition 
structure (i.e., same products to recommend). Both 
retrieval accuracy and speed matter in these scenarios.

The parametric Hallway maze problem[4] consists in 
solving a maze where the agent has a certain (unknown) 
probability of “skidding”, which we capture as different 
environments of a MEMDP.

Solving MEMDPs efficiently
A MEMDP can be converted to a Partially-Observable MDP 
(POMDP) by considering the cross-product I  x S as the new 
set of states. Hence standard POMDPs solvers apply to this 
framework, however these are often suboptimal.

Instead, we show that modeling and incorporating the 
specific nature of MEMDPS into these solvers allow for great 
computational gains, which can be summarized as the 
following three improvements:

1. Sparse transitions: The partially-observable (PO) feature 
(the environment I) is sampled only once, at initialization, and 
then kept constant. The memory required to store the 
transition function is thus only O ( ∣S∣2 ⋅ ∣I∣ ⋅ ∣A∣) 
=> Memory efficient (Save up a multiplicative factor∣I∣)

2. Faster belief updates: In a MEMDP, the uncertainty lies 
on the environment, rather than on states. Furthermore, as 
noted before, the PO features are static, once sampled.
=> Computationally efficient (belief update is O ( ∣I∣) )

3. Monotonic average belief entropy: We show that, in a 
MEMDP, the expected change of entropy of the updated 
belief is always bounded. This can be used in POMDPs 
solver that rely on this signal as a guiding heuristic[1].

Optimized Solvers
We leverage these three properties to optimize two classic 
POMDP solvers for MEMDPs applications:

PBVI[2]: Leveraging the MEMDP structure helps with 
selecting a restricted set of beliefs to perform value 
iteration on, as well as for linear time belief updates. We 
call this variant Sparse PBVI (SPBVI)

POMCP[3]: The sparse transition of MEMDPs can be 
readily applied. Building on this, we propose two variants:

- POMCP-ex: Instead of estimating belief updates via 
Monte Carlo sampling, we can perform efficient exact 
belief updates in linear time in a MEMDP.

- PAMCP: We use caching to retain past histories in 
future executions of the solver. This allows us to 
efficiently solve a stream of input queries while 
benefiting from past environment information.
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Example: User-aware recommender, modeled as a 
MEMDP, and its POMDP equivalent (2 products, 2 users)
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(b)  POMDP
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(synthetic) MDP SPBVI POMCP POMCP-ex PAMCP PAMCP-ex

Accuracy 0.12 ± 0.03 - 0.64 ± 0.27 0.77 ± 0.07 0.68 ± 0.24 0.75 ± 0.08

Env. prediction - - 0.79 ± 0.33 0.96 ± 0.04 0.85 ± 0.30 0.94 ± 0.06

Runtime 5h30mn OOM 9mn36s 14s 14s 36s

(Foodmart) MDP SPBVI POMCP POMCP-ex

Accuracy 0.61 ± 0.14 0.62  ± 0.14 0.62 ± 0.14 0.62 ± 0.14

Precision 0.74  ±  0.09 - 0.78  ± 0.07 0.78  ± 0.08

Env. prediction - 0.60  ± 0.31 0.54  ± 0.35 0.53  ± 0.36

Runtime 11mn57s 12mn 38s 46s 23s

POMDP solver average runtime: 1479.35
MEMDP solver average runtime: 30.15 s 


