

Learning Model Parameters for Decentralized Schedule-Driven Traffic Control

Hsu-Chieh Hu and Stephen F. Smith

hsuchieh@andrew.cmu.edu, sfs@cs.cmu.edu

Overview

- Schedule-driven traffic control is a decentralized online planning approach for traffic signal control.
- approach is a model-based intersection optimization that depends on the accuracy of control model and model/setting parameters
- We propose to combine planning and learning to set these parameters for different traffic patterns.

Schedule-Driven **Traffic Control**

A Fully Decentralized Hierarchical Algorithm

- Agent (intersection) computes its gradient locally given neighbors' actions and the global state of network.
- The requirement of knowing global state can be relaxed through utilizing neighbor-shared information.

$$\nabla_{\theta_{i}} J(\boldsymbol{\mu}) = \mathbb{E}_{s \sim \rho^{\boldsymbol{\mu}}} \left[\nabla_{\theta_{i}} Q^{\boldsymbol{\mu}}(s, \boldsymbol{\mu}) \right]$$

$$= \mathbb{E}_{s \sim \rho^{\boldsymbol{\mu}}} \left[\nabla_{\theta_{i}} \mu_{\theta_{i}}(s) \nabla_{a_{i}} Q^{\boldsymbol{\mu}}(s, \boldsymbol{a}) |_{a_{i} = \mu_{\theta_{i}}(s)} \right]$$

$$\left[Q^{\boldsymbol{\mu}}(s, \boldsymbol{a}) \middle| = \sum_{(n,m) \in E} Q_{n,m}(s, a_{n}, a_{m}) \right]$$

$$\nabla_{\theta_{i}} J(\boldsymbol{\mu}) = \mathbb{E}_{s \sim \rho^{\boldsymbol{\mu}}} \left[\nabla_{\theta_{i}} \mu_{\theta_{i}}(s) \nabla_{a_{i}} \sum_{(n,m) \in E} Q_{n,m}(s, a_{n}, a_{m}) |_{a_{i} = \mu_{\theta_{i}}(s)} \right]$$

$$= \mathbb{E}_{s \sim \rho^{\boldsymbol{\mu}}} \left[\nabla_{\theta_{i}} \mu_{\theta_{i}}(s) \nabla_{a_{i}} \sum_{j \in \mathcal{N}_{i}} Q_{i,j}(s, a_{i}, a_{j}) |_{a_{i} = \mu_{\theta_{i}}(s)} \right]$$

V: a set of intersections E: a set of road links

Intersection i No. of approaching vehicles Queue length $\mathbf{c}_i(\tau) = [c_{1,i}(\tau), \cdots, c_{p,i}(\tau)]$ $\mathbf{q}_i(au) = [q_{1,i}(au), \cdots, q_{p,i}(au)]$

Average Delay (second)

Centre-Aiken Intersection

 $(s', s, a_i, a_{\mathcal{N}_i}, \hat{l}_i) \equiv ([\hat{\mathbf{q}}'_i, \hat{\mathbf{c}}'_i], [\hat{\mathbf{q}}_i, \hat{\mathbf{c}}_i], \mathbf{G}_i, \mathbf{G}_{\mathcal{N}_i}, \hat{l}_i) \sim \mathcal{D}_i$ **Replay buffer**

Experimental Results

				$\times 10^4$			
	mean	std.	stop no.	× 10		• G _{1,max}	
DQN	63.78	53.35	1.75	1		• G _{2,max}	
DDPG	57.80	47.86	1.59	ms)			• •
Bench (50s, 60s)	89.62	78.64	2.91	(S) 0			•
Bench (50s, 90s)	67.66	55.50	1.91	d uc	• • •		
Bench (50s, 120s)	73.49	62.18	2.34	nctik			,
160 150 140 120 2 # Episodes		6 8 ode = 3.5 hc	10 ours)	Queue len (Number 1000 4000 4000 4000 4000 4000 4000 400	15 10 ngth of Phase 1 er of vehicles) 5 episode = 3.5 hour tor cost	(Number of Number of Numbe	angth of Phase 2 er of vehicles) 4 6 8 10 1 episode = 3.5 hours) Critic cost

Apply episodic RL here for avoiding "terminate" state (irreducible state transition) that queueing stability cannot be retained

	Average Delay (second) and Number of Stops											
	Benchmark			Hierachical			Cycle-based Adaptive					
	mean	std.	stop no.	mean	std.	stop no.	mean	std.	stop no.			
High demand	212.14	361.41	9.55	132.98	92.95	6.76	230.26	279.19	12.34			
Medium demand	84.22	61.90	6.34	82.56	55.84	4.56	86.46	61.40	8.78			
Low demand	71.84	54.25	6.12	72.10	49.11	4.23	73.89	56.77	8.11			
PM rush hour	147.00	177.94	8.27	113.89	88.24	5.10	169.23	265.91	10.81			

RL-based (DDPG):

- **Model:** Two-way queueing grid network
- **Traffic:** High 1056cars/hour; Medium 708cars/hour; Low 472cars/hour
- **Simulator:** Vissim
- layer [30,30] Reward discount $\gamma = 0.99$
- Learning rate $\alpha_a = 0.001$, $\alpha_c = 0.002$
- Buffer size = **1000**
- Batch size = 20
- EMA $\tau = 0.01$

- Self-improving to stabilize a network is realized through learning to configure parameters of the model, and real-time responsiveness is still retained.
- Hierarchical abstraction retains both advantages from learning and planning.
- Sharing real-time information to neighbors can enable decentralized multi-agent learning by approximating global state.

This research was funded in part by the University Transportation Center on Technologies for Safe and Efficient Transportation at Carnegie Mellon University and the CMU Robotics Institute.