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Overview

Intersection i

Schedule-driven traffic control is a decentralized online
planning approach for traffic signal control.

This approach is a model-based intersection YTy (| ,c:'("T')"':p:zlrja(f;i,".g.‘.’e,hci;',‘:zﬂ]]
optimization that depends on the accuracy of control

model and model/setting parameters

We propose to combine planning and learning to set
these parameters for different traffic patterns.
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* Sharing real-time information to neighbors can
enable decentralized multi-agent learning by
approximating global state.
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