Reinforcement Learning ¹University of Texas at Austin, Austin, TX ²Max Planck Institute for Software Systems, Kaiserslautern, Germany

Joint Inference of Reward Machines and Policies for Zhe Xu¹, Ivan Gavran², Yousef Ahmad¹, Rupak Majumdar², Daniel Neider², Ufuk Topcu¹, Bo Wu¹

We proposed an iterative approach that alternates between reward machine inference and RL for the

First, we are interested in exploring a scenario in which the reward machine is not known, but a number of hints

Second, we will explore methods that can infer the

Finally, the method to transfer the q-functions between equivalent states of reward machines can be also used for transfer learning between different tasks where the

This work is supported in part by grants DFG 389792660-TRR 248, DFG 434592664, ERC 610150, DARPA D19AP00004, ONR N000141712623, and

