
Efficient Robot Planning for Achieving Multiple Independent
Partially Observable Tasks that Evolve Over Time
Anahita Mohseni-Kabir, Manuela Veloso, and Maxim Likhachev

{anahitam, mmv, maxim}@cs.cmu.edu
School of Computer Science, Carnegie Mellon University

Introduction
I Objective: In a lot of robotics applications, a robot is in

charge of multiple tasks. For example,
• A mobile robot operating in office buildings to deliver messages,

deliver objects, give directions to people, etc.
• A robot deployed in a restaurant.
• A robot deployed in a factory setting, helping factory workers, e.g., by

providing tools.

I Application: The robot waiter operating in a restaurant
• Is presented with an ongoing stream of tasks, e.g., taking food orders

and checking on customers.
• Should attend the customers’ needs in a timely and efficient manner to

keep everyone satisfied.
• An action that the robot takes depends on
I The duration of possible actions.
I The state of each table.
I How these tables evolve over time.

I Restaurant Model: N models for the N tables [3].
• Solution: the optimal policy must consider all tasks.
• Challenge: for large number of tasks solving the combined model is

computationally impractical.

Contributions
1. Formalize the class of problems with multiple

independent tasks that evolve over time
Key idea: We call a set of N POMDPs, P, independent iff
for each two tasks in the set, the following holds:
• The POMDPs do not share 1) state variables, 2) observation variables,

and 3) actions except a no operation action.
• The transition/observation function for one task does not depend on the

states of the other tasks.

2. Develop optimal, scalable and real-time planning
algorithms
Key idea: instead of solving the agent POMDP model, solve
series of smaller POMDPs.
• In H-step horizon, the robot can only attend to k tasks.
• The robot can consider all possible subsets of size k.

Dramatically smaller and simpler to solve
• We prune the set of subsets using the solutions to the individual tasks.

Algorithm
I Consider subsets of the N tasks with size k

tpls = {tpl ∈ P(P) : |tpl| = k}
I Prune the subsets
• Solve each individual POMDP separately
• Compute a lower-bound LB

Intuition: the robot can only execute one task in its planning horizon.

LB = max
p∈P

(V∗p(bp) +
∑

q∈P\{p}

Vτ
q (bq))

• Compute an upper-bound on the value of the subsets
Intuition: after the first action execution, all tasks can be addressed in
parallel.

UBtpl = max
a∈Atpl

(
∑

p∈tpl

Q∗p(bp, a[p])) +
∑

q∈P\tpl

Vτ
q (bq)

• Prune all the subsets where UBtpl < LB

I Solve the remaining subsets optimally to find the best action

Results
I Planning time: B > A > C > D > E.

I Average reward: we take the difference between the average
reward of our approach and the other approaches. The
average reward mostly follows B ≈ A > C.

I Qualitative results:

[1] A. Mohseni-Kabir, M. Veloso, and M. Likhachev, Optimal Planning over Long and Infinite Horizons for
Achieving Independent Partially-Observable Tasks that Evolve over Time. Under review.
[2] A. Mohseni-Kabir, M. Veloso, and M. Likhachev, Efficient Robot Planning for Achieving Multiple
Independent Partially Observable Tasks that Evolve Over Time. ICAPS, 2020.
[3] A. Mohseni-Kabir, M. Likhachev, and M. Veloso. Waiting Tables as a Robot Planning Problem. IJCAI
Workshop on AIxFood, 2019.

