Contention-aware Mapping and Scheduling Optimization for NoC-based MPSoCs

Rongjie Yan, Institute of Software Chinese Academy of Sciences, Yupeng Zhou, Yige Yan, Minghao Yin, Northeast Normal University, Anyu Cai, Changwen Li, Beijing University of Technology

Motivation

• We consider spatial and temporal aspects of • Deal with the mapping and scheduling for NoC-based communication to avoid contention in Network-on-Chip (NoC)-based architectures.

Problem Definition

MPSoCs from a practical view, i.e., optimizing three objectives: makespan, energy consumption and contention. probability.

Constraint formulation

We provide a flexible constraint formulation for NoCbased mapping and scheduling in the format of logical formulas.

	$m_{ik} \to \neg(\bigvee_{k' \neq k} m_{ik'}), \ell_{ik} \to \neg(\bigvee_{k' \neq k} \ell_{ik'})$	(1)
atic	$\left(\sum_{i=1}^{ T } m_{ik}\right) \le \omega_k$	(2)
traints	$d_{ij} \wedge m_{ik} \wedge m_{jk'} \wedge (k \neq k') \rightarrow o_{ij}, \ o_{ij} \rightarrow d_{ij}$	(3)
	$(\gamma_{k_1k_2k_3k_4} > 0) \land \ell_{ik_1} \land \ell_{jk_2} \land \ell_{lk_3} \land \ell_{rk_4} \land o_{ij} \land o_{lr} \to c$	$\begin{array}{c}f_{ijlr}\\(4)\end{array}$
	$f_i^u = s_i^u + a_i / (\sum_{k=1}^{ P } m_{ik} \cdot \rho_k)$	(5)
	$\hat{f}_{ij}^u \ge \hat{s}_{ij}^u + o_{ij} \cdot (c_{ij} \cdot \tau \cdot D_{ij}/bw + \tau' \cdot (D_{ij} + 1))$	(6)
avior	$\bigvee_{i=1}^{ I } d_{ji} \to \hat{f}^u_{ji} \le s^u_i, f^u_i \le \hat{s}^u_{ij}$	(7)
raints	j=1 $n_{ii} \rightarrow f_i^u < s_i^v$, for $u < v$	(8)
	$m_{ik} \wedge m_{ik} \rightarrow f_i^u \leq s_i^v$, for $u < v$	(9)
	$j \kappa - j \gamma = i \gamma$	
	$m_{ik} \wedge m_{jk} \to s_j^u \ge f_i^u \lor s_i^u \ge f_j^u$	(10)
	$cf_{ijlr} \wedge abs(f_i^u - f_l^u) \le \xi \to \hat{s}_{ij}^u \ge \hat{f}_{lr}^u \lor \hat{s}_{lr}^u \ge \hat{f}_{ij}^u$	(11)
ſ	$\mathcal{M} = \max\{f_i^N \mid t_i \in T\}$	(12)
	$E_p = \sum_{p_k \in P'} (N \cdot \mathcal{E}_{d_k} \cdot \mathbb{T}_k + \mathcal{E}_{i_k} \cdot (\mathcal{M} - N \cdot \mathbb{T}_k))$	(13)
	$E_m = \sum_{p_{k}, p_{k'} \in P'} \sum_{i,j=1}^{ T } c_{ij} o_{ij} m_{ik} m_{jk'} (\varepsilon D_{kk'} + \varepsilon' (D_{kk'}))$	+1))
	$P\kappa, P\kappa' \subseteq I \forall, J = I$	(14)
ctives	$\wp_c(k_1, k_2, k_3, k_4) = \gamma_{k_1 k_2 k_3 k_4} / (D_{k_1 k_2} \cdot D_{k_3 k_4})$	(15)

Cluster Refinement (CR) • Genetic Process Spiral Mapping (SM) Pareto Local Search

$$\mathcal{P}_{i_{1}i_{2}} = \sum_{j_{1}\in\mathcal{S}_{i_{1}}, j_{2}\in\mathcal{S}_{i_{2}}} o_{i_{1}j_{1}} \cdot o_{i_{2}j_{2}} \cdot \wp_{c}(k_{i_{1}}, k_{j_{1}}, k_{i_{2}}, k_{j_{2}})$$

$$(16)$$

$$\bar{\mathcal{P}}_{c} = \sum^{|T|} abs(\mathcal{P}_{ij} - \mathcal{P}_{c}/|T|) \qquad (17)$$

$$minimize(\mathcal{M}), minimize(E_{p} + E_{m}), minimize(\bar{\mathcal{P}}_{c})$$

$$(18)$$

Experimental Results

Comparison between MOHA and various methods

Case	T	E	MOHA	NSGAII	CPLEX(MILP)		CPLEX(CP)		Z3	
			sol	sol	sol	time	sol	time	sol	time
5-m	5	4	3	2(=)+2(≻)	2(=)	687.63	2(=)	53.62	3(=)	3.68
5-p	5	4	3	3(=)	2(=)	829.39	2(=)	49.22	3(=)	6.49
7-m	7	6	2	2(=)	2(=)	-	2(=)	158.96	2(=)	9.14
7-p	7	6	2	2(=)	2(=)	-	2(=)	247.59	2(=)	19.85
8-m	8	7	2	2(=)	l(=)+l(≻)	-	1(=)+1(≻)	287.50	2(=)	12.92
8-p	8	7	2	2(=)	2(=)	-	2(=)	316.83	2(=)	23.13
10-m	10	9	1	1(=)	1(=)	-	1(=)	-	1(=)	93.45

Comparison between MOHA and NSGAII on large instances

MOHA can find all the pareto fronts on small-scale benchmarks and outperforms NSGAII on large-scale instances.