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Motivation

* We consider spatial and temporal aspects of ¢ Deal with the mapping and scheduling for NoC-based
communication to avoid contention in Network-on-Chip  MPSoCs from a practical view, i.e, optimizing three
(NoC)-based architectures. objectives: makespan, energy consumption and contention.

probability.

Problem Definition . .
Constraint formulation

We provide a flexible constraint formulation for NoC-
based mapping and scheduling in the format of logical
formulas.
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Hybrid Search Algorithm

Behavior
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Heuristics
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Cluster Refinement (CR) ¢ Genetic Process

* Spiral Mapping (SM) * Pareto Local Search
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Experimental Results

Comparison between MOHA and various methods Comparison between MOHA and NSGAII on large instances

NSGAII CPLEX(MILP) CPLEX(CP)

sol fime fime
687.63 53.62
829.39 49.22
158.96
247.59
287.50
316.83
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MOHA can find all the pareto fronts on small-scale benchmarks and outperforms NSGAIl on large-scale instances.




