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Introduction Results

Autonomous penetration testing (pen-testing) aims to assess the security ~ We tested our approach on two benchmark scenarios extended to be partially observable

of a network by finding and exploiting vulnerabilities. We view pen-testing ~ and multi-agent |2, 3.
as a sequential decision problem with three sources of uncertainty (table
1). In this work we introduce a pen-testing model that can
handle all three sources of uncertainty and demonstrate its
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effectiveness in two benchmark scenarios (fig. 2). 8000
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I'he pen-tester and defender observe each other only indirectly via changes

to the network state. We propose to model the defender as a @@ POMDP-PenTesting  EE@ LD-PenTesting
Markovian Arrival Process (M AP) which represents the ex- == D-PenTesting B Oracle-PenTesting
pected time the defender takes to mitigate an attack. For this o0
work we use the Bernoulli process with a single parameter: the informa- c c
tion decay factor d (fig. 1). 2 2 on- w
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Figure 1:Bernoulli Process where d models the defender mitigating the attack. | | ] * |
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Given a pen-testing POMDP model P = (S, A, T,0, Z, R,~). one andom

Figure 2:Performance of our approach for two benchmark scenarios (columns). The bar plot graphs

Define Py = (S, A, Ty, O, Z, R, ), with transition T} for state variable s,:

compare the performance of pen-testing models for each defender. The line graphs show performance of

1 (8; ‘ Sj, CL) if a changes or observes S D-PenTesting for different values of d.
/ : — 'd - /1 | 1 ! ' 3
La (SJ | 55, a) 1S5—1 else if 55 # s, Conclusion
1 —d otherwise.
Requires knowing d beforehand. In this work we:
LD-PenTesting 1. presentéd an efficient abstract defen@er model based on 8% MAP,.
2. used this model to create D-Pen'lesting and LD-Pen'lTesting which can handle all

Uses Bayesian Reinforcement Learning to learn the defenders model online. three sources of uncertainty present in pen-testing (Table 1),

3. showed the effectiveness of our approach in two benchmark scenarios.

Define Pyg = (Sia, A, T1a, O, Z14, Ria, )
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