Generating Explanations for Temporal Logic Planner Decisions

Daniel Kasenberg*, Ravenna Thielstrom, and Matthias Scheutz ⊠ dmk@cs.tufts.edu ♥@dkasenberg ∰dkasenberg.github.io

Introduction

We aim to develop artificial agents which can

- Learn interpretable objectives (through language and behavior) [1] • Behave competently with respect to these objectives, even when they conflict [2]
- Explain their behaviors to human teammates in terms of these objectives (and correct objectives or world models if needed)

We have developed a system which constructs **explanations** for the behavior of a multi-objective linear temporal logic (LTL) planning agent operating in a Markov decision process (MDP).

Test scenario: ShopWorld

• Agent is a robot sent to go shopping for its user in a store selling a watch • User wants the watch, but gives the robot insufficient money to afford it

Generating explanation structures

Human Robot Interaction Lab

🥑 @hrilab 🇬 hrilab.tufts.edu

Tufts University

1. $\tau \vDash \psi$? If not, return $\langle \text{QUERYFALSE}, \{(\psi, \text{EVIDENCE}(\tau, \psi))\}, \emptyset, \emptyset \rangle$ e.g. Why $\mathbf{G} \neg leftStore?$ $\langle QUERYFALSE, \{ (\mathbf{G} \neg leftStore, \{ (1, leftStore) \}) \}, \emptyset, \emptyset \rangle$ 2.Does any possible trajectory τ' have $\tau' \models \neg \psi$? If not, return $\langle NEGQUERYIMPOSSIBLE, \emptyset, \emptyset, \emptyset \rangle$ e.g. Why G¬bought?

3.Solve the augmented LTL planning problem

$$\langle \mathcal{M}, (\mathbf{\Phi}, \neg \psi), \begin{bmatrix} \mathbf{w} \\ 1 \end{bmatrix}, \begin{bmatrix} \mathbf{z} \\ \max_i z_i + 1 \end{bmatrix} \rangle$$

execute solution policy \rightarrow alternative trajectory τ' ; return $\langle ALTQUERY, \{(\phi, EVIDENCE(\tau, \phi)) : \tau \text{ violates } \phi\},\$ $\tau', \{(\phi, \text{EVIDENCE}(\tau', \phi)) : \tau' \text{ violates } \phi\}$

Linear temporal logic (LTL) [5]

• A simple propositional logic encoding time

 $\phi ::= p \mid \neg \phi_1 \mid \phi_1 \lor \phi_2 \mid \phi_1 \land \phi_2 \mid \phi_1 \to \phi_2$ $\mathbf{X}\phi_1 \mid \mathbf{G}\phi_1 \mid \mathbf{F}\phi_1 \mid \phi_1 \mathbf{U}\phi_2$

where p a proposition, ϕ_1, ϕ_2 LTL statements. • $\mathbf{X}\phi_1$: "in the next time step, ϕ_1 "

- $\mathbf{G}\phi_1$: "in all present and future time steps, ϕ_1 "
- $\mathbf{F}\phi_1$: "in some present or future time step, ϕ_1 " • $\phi_1 \mathbf{U} \phi_2$: " ϕ_1 will be true until ϕ_2 becomes true"

LTL objectives in ShopWorld

"Leave the store while holding the watch" $\mathbf{F}(leftStore \wedge holding)$

"Do not leave the store while holding anything which you have not bought" $\mathbf{G} \neg (leftStore \land holding \land \neg bought)$

Multi-objective LTL planning

We define a multi-objective LTL planning problem as a tuple

 \mathbf{T}

e.g. Why $\mathbf{G} \neg (leftStore \land holding)$? $\mathbf{1.\tau} \models \mathbf{G} \neg (leftStore \land holding)$ **2.** $\exists \tau' \text{ s.t. } \tau' \nvDash \mathbf{G} \neg (leftStore \land holding)$

3. τ' : pickUp, leaveStore

return $\langle ALTQUERY, \{ (\mathbf{F}(leftStore \land holding(glasses)), \} \}$ $\{ (0, \neg holding(glasses)), (1, \neg holding(glasses)) \} \}, \tau', \\ \{ (\mathbf{G} \neg (leftStore \land holding(glasses) \land \neg bought(glasses)), \} \}, \tau', \\ \{ (\mathbf{G} \neg (leftStore \land holding(glasses)) \land \neg bought(glasses)), \} \}, \tau', \\ \{ (\mathbf{G} \neg (leftStore \land holding(glasses)) \land \neg bought(glasses)), \} \}, \tau', \\ \{ (\mathbf{G} \neg (leftStore \land holding(glasses)), \land \neg bought(glasses)), \} \}, \tau', \\ \{ (\mathbf{G} \neg (leftStore \land holding(glasses)), \land \neg bought(glasses)), \} \}, \tau', \\ \{ (\mathbf{G} \neg (leftStore \land holding(glasses)), \land \neg bought(glasses)), \} \}, \tau', \\ \{ (\mathbf{G} \neg (leftStore \land holding(glasses)), \land \neg bought(glasses)), \} \}, \tau', \\ \{ (\mathbf{G} \neg (leftStore \land holding(glasses)), \land \neg bought(glasses)), \} \}, \tau', \\ \{ (\mathbf{G} \neg (leftStore \land holding(glasses)), \land \neg bought(glasses)), \} \}, \tau', \\ \{ (\mathbf{G} \neg (leftStore \land holding(glasses)), \land \neg bought(glasses)), \} \}, \tau', \\ \{ (\mathbf{G} \neg (leftStore \land holding(glasses)), \land \neg bought(glasses)), \} \}, \tau', \\ \{ (\mathbf{G} \neg (leftStore \land holding(glasses)), \land \neg bought(glasses)), \} \}, \tau', \\ \{ (\mathbf{G} \neg (leftStore \land holding(glasses)), \land \neg bought(glasses)), \} \}, \tau', \\ \{ (\mathbf{G} \neg (leftStore \land holding(glasses)), \land \neg bought(glasses)), \} \}, \tau', \\ \{ (\mathbf{G} \neg (leftStore \land holding(glasses)), \land \neg bought(glasses)), \} \}, \tau', \\ \{ (\mathbf{G} \neg (leftStore \land holding(glasses)), \land \neg bought(glasses)), \} \} \}$ $\{(2, leftStore), (2, holding(glasses)), (2, \neg bought(glasses))\}\}$

Explanatory dialogue in natural language

- We have integrated our explanation approach into DIARC, a robotic architecture, to facilitate **natural language** explanatory dialogue. [3,4]
- Specifications and queries in an object-oriented extension to LTL (violation enumeration language; VEL) allowing object quantification
- Utterance \rightarrow VEL query \rightarrow explanation structure \rightarrow natural language response
- Example: ShopWorld with two objects (glasses and watch); agent can afford one • Buys the glasses, leaves the watch

$$\mathcal{P} = \langle \mathcal{M}, \mathbf{\Phi}, \mathbf{w}, \mathbf{z}
angle$$

where

- $\mathcal{M} = \langle S, A, P, R, \gamma \rangle$ is a Markov decision process
- $\Phi = \phi_1, \cdots, \phi_n$ a set of (syntactically safe/co-safe) LTL objectives • w, $z \in \mathbb{R}^n$ contain the weight w_i and priority z_i respectively of ϕ_i ,
- specifying preferences among objectives
- Objectives w/ same priority \rightarrow traded off using weights
- Objectives w/ different priorities \rightarrow higher-priority takes precedence (lexicographic ordering)

Basic solution approach:

- Compile each objective ϕ_i into a finite state machine (FSM) $M^{\phi_i} = \langle \Sigma^{\phi_i}, Q^{\phi_i}, \delta^{\phi_i}, q_0^{\phi_i}, F^{\phi_i} \rangle$ which accepts only on "good/bad prefixes" of ϕ_i
- Construct a new "product" MDP \mathcal{M}^{\otimes} whose state space is $S \times Q^{\phi_1} \times \cdots \times Q^{\phi_n}$
- Construct reward functions $R^{\phi_1}, \cdots, R^{\phi_n}$ over \mathcal{M}^{\otimes} such that \mathcal{P} is a reward maximization problem (solvable, e.g., using value iteration)

Planning in ShopWorld

Given the LTL objectives above (and assuming the anti-shoplifting) objective has higher priority), the agent performs only the single action leaveStore.

Explanation structures

Consider an agent who has acted according to trajectory τ . We wish to answer questions of the form "Why ψ ?", where ψ is an arbitrary (safe/co-safe) LTL formula.

	Input utterance	VEL query	Explanation in memory	Output utterance
	"Why didn't you buy anything?"	$\mathbf{Why} \; \forall x. \mathbf{G} \neg bought(x)?$	$\langle QUERYFALSE, \{(\forall x. \mathbf{G} \neg bought(x), \{(2, bought(glasses))\})\}, \emptyset, \emptyset \rangle$	"I bought the glasses"
-	"Why didn't you buy everything?"	Why $\exists x. \mathbf{G} \neg bought(x)$?	$\langle NegQueryImpossible, \emptyset, \emptyset, \emptyset \rangle$	"It was impossible for me to buy every- thing"
	"Why didn't you leave the store while holding everything?"	Why $\forall x. \mathbf{G} \neg (leftStore \land holding(x))?$	$\langle ALTQUERY,$ {{(F (leftStore \land holding(watch)), {(0, \neg holding(watch)), (1, \neg holding(watch)), (2, \neg holding(watch))}), Ø}, $\tau',$ {(G \neg (leftStore \land holding(glasses))	"I could have left the store while hold- ing everything, but that would have vi- olated more important rules"
	↔"How would you have done that?"			"I would have picked up the glasses, picked up the watch, bought the watch, and left the store"
	∽"What rules would you have broken?"			"I would have left the store while hold- ing the glasses, which I had not bought"
	↔"How would that have been worse?"		(3, leftStore), (3, holding(glasses)), $(3, \neg bought(glasses))\})$	"Leaving the store while holding the glasses which I had not bought is worse than not leaving the store while holding the watch"

Future work

- Incorporating explicit causal models (esp. in NEGQUERYIMPOSSIBLE case)
- Tailoring explanations to interactant knowledge
- Adapting to stochastic environments
- Need to represent multiple trajectories or probability distribution
- Improving efficiency of planner
- Impractical for nontrivial domains
- Dropping assumption that agent has perfect knowledge of transition dynamics

In response to such a question, we construct an explanation structure $\langle \Gamma, E, \tau', E' \rangle$, where

- $\Gamma \in \{\text{QUERYFALSE}, \text{NEGQUERYIMPOSSIBLE}, \text{ALTQUERY}\}$ • au' is either a trajectory, or the empty set
- E contains one or more pairs $(\phi, \text{EVIDENCE}(\tau, \phi))$ where
- ϕ is an LTL statement
- EVIDENCE $(\tau, \phi) = \min\{|E| : E \subseteq \{0, \cdots, T\} \times L(\Pi);$ $\tau \vDash E;$
for all τ' s.t. $\tau' \vDash E, \tau' \notin \operatorname{Traj}_{\checkmark}(\phi)$

e.g. in ShopWorld,

 $EVIDENCE(\tau, \mathbf{F}(leftStore \land holding)) =$ $\{(0, \neg holding), (1, \neg holding)\}$

• E' is as E, but for τ'

Acknowledgments

This project was supported in part by NSF IIS grant 43520050 and by NASA grant C17-2D00-TU.

References

[1] Kasenberg, D., & Scheutz, M. (2018, April). Norm conflict resolution in stochastic domains. In Thirty-Second AAAI Conference on Artificial Intelligence. [2] Kasenberg, D. and Scheutz, M., 2017, December. Interpretable apprenticeship learning with temporal logic specifications. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC) (pp. 4914-4921). IEEE. [3] Kasenberg, D., Roque, A., Thielstrom, R., Chita-Tegmark, M. and Scheutz, M., 2019. Generating justifications for norm-related agent decisions. In Proceedings of the 12th International Conference on Natural Language Generation (pp. 484-493). [4] Kasenberg, D., Roque, A., Thielstrom, R. and Scheutz, M., 2019. Engaging in **Dialogue about an Agent's Norms and Behaviors.** arXiv preprint arXiv:1911.00229. [5] Pnueli, A. (1977, September). **The temporal logic of programs.** In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977) (pp. 46-57). IEEE.