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Problem Statement
Repetitive monitoring of the points of interest (PoI)
using multiple HAPS while considering:
• PoI and must be monitored using an

infrared (IR) camera and an electro-optical (EO)
camera respectively, and within a specific time
window;

• A HAPS carries one camera, either IR of EO;
• Once onboard memory is full, the HAPS transfers

the image data to the ground control station
(GCS) at , where line-of-sight communication
with the GCS is possible;

• The operation must take place within ; are
forbidden airspace, representing either an
occupied airspace or a dangerous weather zone;

• Wind field affects the ground speed of the HAPS.
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High Altitude Pseudo Satellite (HAPS)

Tightly-coupled Task+Motion Planning with PDDL+?

Fig. 1 HAPS as an alternative to satellites for easy payload maintenance and 
flexible deployment

Operating 
altitude: ~18 km

Long 
endurance: 

months

Completely 
solar-powered

Low airspeed:
~30 m/s

Fixed-wing 
aircraft

Limited payload

HAPS planning problem is a combination of
subproblems (1) a time-dependent multi-vehicle
routing problem, (2) a classical (task) planning problem
and a (3) kinodynamic motion planning problem.

PDDL+ (Problem Domain Definition Language) can
formulate mixed discrete-continuous planning problems
that can be solved with compatible planners.

While the formulation of subproblems (1) and (2) in
PDDL+ are more commonly known, the formulation of
subproblem (3) is not. Fig. 4 outlines how a
kinodynamic motion planning problem can be mapped
to PDDL+, while the figure on the right shows the one-
step task and motion planning (TMP) architecture
intended. TMP is “tightly-coupled”, as the search spaces
are merged.

Tightly-Coupled 

Task + Motion Planning

HAPS Pilot

Constraints:
• Mission 
• Platform
• Weather
• Airspace

𝜋 = < 𝑝𝑖 , ℎ, 𝑎, 𝑡 𝑗 > 𝑘

where 𝑝𝑖 is the PoI to monitor, ℎ is the haps 
assigned, 𝑎, 𝑡 𝑗 is the path (i.e. sequence of time-

stamped actions) to follow to reach 𝑝𝑖

preconditions(e)

Domain definition

Problem instance definition

PDDL+

action, a
preconditions(a) effects(a)

event, e
effects(e)

process, p
preconditions(p) effects(p)

State information

State space setup
• Control space, sampled 

ሷ𝑥 with ሷ𝑥 𝑡 < 𝑎

• State propagator
𝑥 𝑡 − 1 → 𝑥(𝑡)
ሶ𝑥 𝑡 − 1 → ሶ𝑥(𝑡)

Problem definition: < 𝑋, 𝐺, 𝑂, 𝐿, 𝑎, 𝑣 >

Sampling-based motion planner

State validity check
• Obstacles, 𝑥 ∉ 𝑂
• Bounded configuration

parameters, 𝑥 ∈ 𝐿
• Bounded first derivative, ሶ𝑥 < 𝑣

global constraints

ENHSP (Expressive Numeric Heuristic Search Planner)* is to date the only PDDL+ planner that
supports the complex problem, especially thanks to its ability to cope with non-linear numeric
operations, e.g. trigonometric operations, needed in the modelling of the platform dynamics, i.e.
the update of longitude and latitude of the HAPS respectively:

ሶ𝜆 =
𝑣wind,E+ 𝑣TAS

∗ cos 𝛾 sin 𝜒

𝑅 +𝑎𝑙𝑡 cos 𝜙
,    and    ሶ𝜙 =

𝑣wind,N+ 𝑣TAS
∗ cos 𝛾 cos 𝜒

𝑅 +𝑎𝑙𝑡
.

However, scaling up ENHSP for solving the complex task+motion planning problem with multiple 
HAPS and multiple PoI in a tightly-coupled manner as in Fig. 3 was not possible. The domain-
independent heuristic cannot cope.  Therefore, we resort to: 

Integrated Task and Motion Planning 

Multi-vehicle routing 
solver for PoI
assignment:

ALNS

Kinodynamic Flight 
Path Planning:

ENHSP
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ALNS (Adaptive Large Neighbourhood Search), a powerful time-dependent multi-vehicle routing problem
solver, is exploited for assigning PoI to the HAPS. The search space for motion and simple task planning are
embedded in the search space of the multi-vehicle routing planning.

In other words, ALNS acts as a “higher-level” wrapper for ENHSP. The advantages of doing so are:
• The search in the “high-level” and “low-level” spaces is interleaving (see Fig. 5), instead of sequential, as

done in previous work, where planning is performed in two steps: strategic and tactical, avoiding therefore
an iterative rejection of non-feasible high-level strategic plan by the low-level tactical planner.

• We break down the complex problem into smaller ones that are solvable for ENHSP, and stitch the new
“pieces” of plan (or rather partial plan) computed by ENHSP, i.e. ෥𝝅𝒌−𝟏, ෥𝝅𝒌 with the remaining partial plan,
i.e. ෥𝝅𝒌+𝟏, … , ෥𝝅𝒏.

• The implementation can be “anytime”, if we initialize ALNS with a feasible plan, since the plan will be
improved partially by searching in the neighborhood (see Fig. 6).

• Problem-dependent meta-heuristics can be exploited easily within ALNS.

* Scala E., Haslum P., Thiebaux S., Ramirez M.: (2016) Interval-Based Relaxation for General Numeric Planning in Proc. of the European
Conference on Artificial Intelligence (ECAI-2016)

Validation and Performance Benchmarking

Performance tests on the integrated task and motion planning approach against the previous sequential
planning framework, in which a complete task plan is generated to be “refined” by the numeric motion
planner. The integrated approach has a higher success rate for generating feasible plans within an imposed
planning time, with comparable plan quality (i.e. comparable number of PoI monitored) within a given plan
horizon.

Fig. 6 Success rate: generation of feasible plans within the limited 
planning time

Fig. 7 Plan Quality: number of PoI monitored within a fixed plan 
horizon

This work has exhibited the advantages of combining search spaces of different granularity levels to solve a
complex real-world planning problem. As future work, the framework can be made more generic, in order to be
aligned with the “domain-independent” nature of the PDDL+ planner (i.e. ENHSP). This can be done by
• Including an interface to the framework for defining domain-dependent meta-heuristics;
• Using a domain-independent “stitching” method while improving the plan locally by “removing” and
“inserting” a new task assignment.

Conclusion and Future Work

This is because the sequential planning approach tends to, in tougher environments, suffer from an iterative
“rejection” of task plans, i.e. the planning fails to generate feasible plans at the higher task planning level,
which will be noticed later and rejected by the lower level numeric motion planner.
The integrated framework, on the other hand, benefits from the “anytime” implementation, and is therefore
more robust in tougher environments.

Fig. 4 Mapping kinodynamic motion planning paradigm into PDDL paradigm

Fig. 3 Tightly-coupled TMP

Fig. 2 Typical mission scenario for HAPS: monitoring of PoI

Fig. 5 Integrated task and motion planning: exploring search spaces in an interleaving manner

Plan for HAPS ℎ at iteration 𝑖 − 1

Fig. 6 Iterations of ALNS to find a better assignment of PoI resulting in “piecewise” planning 
problem (simple task +motion planning on the section in red) solvable using ENHSP

Plan for HAPS ℎ at iteration 𝑖 Plan for HAPS ℎ at iteration 𝑖 + 1
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