LEARNING NEURAL SEARCH POLICIES
FOR CLASSICAL PLANNING

Pawet Gomoluch™, Dalal Alrajeh”, Alessandra Russo , Antonio Bucchiarone!

‘Tmperial College London, UK: "Fondazione Bruno Kessler, Trento, Italy

Problem statement Representation of the planner’s state

Forward search planners typically rely on a single search procedure which remains fixed To capture the information about the state of the search, we consider features such as,
throughout the process of solving a problem. among others:

In this work, we aim to:

. . . . the heuristic value of the initial state h(sg);
e Construct a planner which can adapt its search approach while solving a « the heuristic value of the initial state A(so)

problem, based on the state of the search. e the lowest heuristic value encountered within the search Aiy;
e Automatically learn search policies tailored to given problem distributions e the time elapsed since the search started;
and performance objectives (such as the IPC score). e the number of node expansions performed since the last change in the value of Ay

Planning with parametrized search Learning search policies

We first introduce a parametrized search routine, which combines a number of search
techniques including greedy and e-greedy best-first search, local search and random
walks. The character of the search depends on the values of the routine’s parameters:

Our neural search policies are feed-forward neural networks, mapping the repre-
sentation of the planner’s state to the values of the search routine’s parameters.
To learn policies best suited to a given problem distribution and performance objective,
e ¢ — the probability of selecting a random node from the open list; we employ the Cross-Entropy Method (CEM) [1] and introduce a normal distribution

e S — the number of expansions without progress necessary to trigger a random walk: over the policy parameters .

e R — the number of random walks following a single node expansion: We also evaluate a simpler approach, in which the search routine’s parameters are
optimized directly and remain fixed throughout the search, without regard to the current

e [, — the length of a random walk;
search state.

e (' — the number of node expansions in the global-local cycle;

e ¢ — the proportion of local search in the global-local cycle. 1: function TRAIN(P,u,r,n,m)
The (simplified) algorithm below outlines a planner based on the parametrized search 2 initiglize pand 2 At every iteration, r problems and n poli-
routine. 3 for i =1..u do cies are sampled randomly. Vectors 6 store
4 p1--pr < P the parameters of the neural network or the
1: function PLANNER(s, g, O) o 01...0, N(p, %) search routine’s parameters directly.
2 global_open < |s] 6 for j =1..n do
3 while true do The parameters are set at 7 for k. =1...r do
4 €,S, R, L,C, c < set_search_parameters|() every iteration, which al- 8 run policy 6; on py, record plan cost ¢;
5: fori=1...(1—¢)-C do lows for adaptation of the 9: end for
6 STEP(global_open, O, g, R, L) search approach. 10: end for
v end for 11: G1...G,, < compute IPC score for 60;...6,
S local_open < [pop(global_open)] 12: sort 01...0,, by scores G...G), (highest first)
9: fort=1...c-Cdo 13: < (1 —a)p+ a-mean(d;...0)
10: STEP(local_open, O, ¢, R, L) The search interleaves be- 14: > (1 — a)X + « - covariance(6;...0,,)
11- end for tween global and local ex- 15: end for
19: merge local_open into global_open pansions, with their num- 16: return u - |
13- end while bers defined by the param- 17: end function The policies are evaluated in order to select
14- end function eters. the m best performing ones. The distribution
15: is then updated to increase the likelihood of

16: function STEP(open, O, g, R, L) the best policies.

17: s < pop(open, €)
18: if s € g then

1o plan + extract_plan(s) Results and future work

20: return plan > return from PLANNER
21: end if _ S e
22: successor_states < expand(s, O) Bach node expansion can For evaluation, we train both the neural search policies (NSP) and the directly opti-
23: add(open, successor_states) be followed by a number of mized variant (Optimized) for each domain separately and compare against planners
24: if expanstons_without_progress > S then random walks 1_f the osearch based on each of the involved search techniques on its own, as well as a handcrafted,
25: fori=1...Rdo 5 i PIOZIERSING WLy e fixed combination of all the techniques (Mized).
26: walk_states < random_walk(s, L) spect. t? the lowest observed
27: add(open, walk_states) heuristic value [2]. Elevators Floortile No-mystery Parking Transport | Sum
28: end for GBEF'S 14.67 2.24 8.18 9.24 2.6 36.93
29: end if e-GBFS 13.07 2.64 8.93 7.44 2.7 34.78
30: return in_progress ©> return to the PLANNER loop GBFS+RW | 14.63 0.47 6.78 7.95 3.6 33.42
31: end function Local search | 15.97 1.91 7.15 11.85 4.48 41.36
Combined |11.6 1.25 6.69 6.14 2.9 28.58
Optimized |14.64 3.5 8.86 13.81 5.39 46.18
NSP 16.37 3.28 9.04 1293 5.12 46.74
References The table includes the IPC scores obtained on held-out test sets of 20 problems of in-

creasing difficulty (average over 10 randomly generated sets per domain). The trained
approaches generally outperform the baselines. The benefit of the state-dependency is
clear for the Elevators domain. However, there are also cases where the simpler vari-
[1] Shie Mannor, Reuven Rubinstein, and Yohai Gat. “The Cross Entropy Method for ants performs better, despite being strictly less expressive. This effect is likely due to
Fast Policy Search”. Tn: JCML. 2003. the fact that, with less parameters, optimization can better explore the policy space.
2] Fan Xie, Martin Miiller, and Robert Holte. “Adding Local Exploration to Greedy Future work will aim to improve optimization for the more complex case. Other direc-
Best-First Search in Satisficing Planning”. In: AAAL 2014. tions include further extensions of the parametrized search routine and more detailed
representations of the planner’s state.

BTEX TikZposter

