
LATEX TikZposter

Learning Neural Search Policies
for Classical Planning

Pawe l Gomoluch*, Dalal Alrajeh*, Alessandra Russo*, Antonio Bucchiarone†

*Imperial College London, UK; †Fondazione Bruno Kessler, Trento, Italy

Learning Neural Search Policies
for Classical Planning

Pawe l Gomoluch*, Dalal Alrajeh*, Alessandra Russo*, Antonio Bucchiarone†

*Imperial College London, UK; †Fondazione Bruno Kessler, Trento, Italy

Problem statement

Forward search planners typically rely on a single search procedure which remains fixed
throughout the process of solving a problem.
In this work, we aim to:
• Construct a planner which can adapt its search approach while solving a
problem, based on the state of the search.

• Automatically learn search policies tailored to given problem distributions
and performance objectives (such as the IPC score).

Planning with parametrized search

We first introduce a parametrized search routine, which combines a number of search
techniques including greedy and ε-greedy best-first search, local search and random
walks. The character of the search depends on the values of the routine’s parameters:

• ε – the probability of selecting a random node from the open list;

• S – the number of expansions without progress necessary to trigger a random walk;

• R – the number of random walks following a single node expansion;

• L – the length of a random walk;

• C – the number of node expansions in the global-local cycle;

• c – the proportion of local search in the global-local cycle.

The (simplified) algorithm below outlines a planner based on the parametrized search
routine.

1: function Planner(s0, g, O)
2: global open← [s0]
3: while true do
4: ε, S,R, L, C, c← set search parameters()
5: for i = 1 . . . (1− c) · C do
6: Step(global open,O, g, R, L)
7: end for
8: local open← [pop(global open)]
9: for i = 1 . . . c · C do

10: Step(local open,O, g, R, L)
11: end for
12: merge local open into global open
13: end while
14: end function
15:

16: function Step(open,O, g, R, L)
17: s← pop(open, ε)
18: if s ∈ g then
19: plan← extract plan(s)
20: return plan . return from Planner
21: end if
22: successor states← expand(s,O)
23: add(open, successor states)
24: if expansions without progress > S then
25: for i = 1 . . . R do
26: walk states← random walk(s, L)
27: add(open, walk states)
28: end for
29: end if
30: return in progress . return to the Planner loop
31: end function

References

[1] Shie Mannor, Reuven Rubinstein, and Yohai Gat. “The Cross Entropy Method for
Fast Policy Search”. In: ICML. 2003.

[2] Fan Xie, Martin Müller, and Robert Holte. “Adding Local Exploration to Greedy
Best-First Search in Satisficing Planning”. In: AAAI. 2014.

Representation of the planner’s state

To capture the information about the state of the search, we consider features such as,
among others:

• the heuristic value of the initial state h(s0);

• the lowest heuristic value encountered within the search hmin;

• the time elapsed since the search started;

• the number of node expansions performed since the last change in the value of hmin.

Learning search policies

Our neural search policies are feed-forward neural networks, mapping the repre-
sentation of the planner’s state to the values of the search routine’s parameters.
To learn policies best suited to a given problem distribution and performance objective,
we employ the Cross-Entropy Method (CEM) [1] and introduce a normal distribution
over the policy parameters N .

We also evaluate a simpler approach, in which the search routine’s parameters are
optimized directly and remain fixed throughout the search, without regard to the current
search state.

1: function train(P , u, r, n,m)
2: initialize µ and Σ
3: for i = 1...u do
4: p1...pr ← P
5: θ1...θn ← N (µ,Σ)
6: for j = 1...n do
7: for k = 1...r do
8: run policy θj on pk, record plan cost cj,k
9: end for

10: end for
11: G1...Gn ← compute IPC score for θ1...θn
12: sort θ1...θn by scores G1...Gn (highest first)
13: µ← (1− α)µ + α ·mean(θ1...θm)
14: Σ← (1− α)Σ + α · covariance(θ1...θm)
15: end for
16: return µ
17: end function

Results and future work

For evaluation, we train both the neural search policies (NSP) and the directly opti-
mized variant (Optimized) for each domain separately and compare against planners
based on each of the involved search techniques on its own, as well as a handcrafted,
fixed combination of all the techniques (Mixed).

Elevators Floortile No-mystery Parking Transport Sum
GBFS 14.67 2.24 8.18 9.24 2.6 36.93
ε-GBFS 13.07 2.64 8.93 7.44 2.7 34.78
GBFS+RW 14.63 0.47 6.78 7.95 3.6 33.42
Local search 15.97 1.91 7.15 11.85 4.48 41.36
Combined 11.6 1.25 6.69 6.14 2.9 28.58
Optimized 14.64 3.5 8.86 13.81 5.39 46.18
NSP 16.37 3.28 9.04 12.93 5.12 46.74

The table includes the IPC scores obtained on held-out test sets of 20 problems of in-
creasing difficulty (average over 10 randomly generated sets per domain). The trained
approaches generally outperform the baselines. The benefit of the state-dependency is
clear for the Elevators domain. However, there are also cases where the simpler vari-
ants performs better, despite being strictly less expressive. This effect is likely due to
the fact that, with less parameters, optimization can better explore the policy space.
Future work will aim to improve optimization for the more complex case. Other direc-
tions include further extensions of the parametrized search routine and more detailed
representations of the planner’s state.

The parameters are set at
every iteration, which al-
lows for adaptation of the
search approach.

The search interleaves be-
tween global and local ex-
pansions, with their num-
bers defined by the param-
eters.

Each node expansion can
be followed by a number of
random walks if the search
is not progressing with re-
spect to the lowest observed
heuristic value [2].

At every iteration, r problems and n poli-
cies are sampled randomly. Vectors θ store
the parameters of the neural network or the
search routine’s parameters directly.

The policies are evaluated in order to select
them best performing ones. The distribution
is then updated to increase the likelihood of
the best policies.


