¹Departamento de Ciencias de la Ingeniería, Universidad Andrés Bello, Chile ²Department of Computer Science & Engineering, Washington University in St. Louis, USA ³Departamento de Ciencia de la Computación, Pontificia Universidad Católica de Chile, Chile ⁴Department of Computer Science, University of Southern California, USA

Bi-objective search has many applications

- **Path-planning in robotics**: distance and battery consumption
- **HAZMAT transport in cities**: travel time and risk of exposure for residents
- **Cycling**: distance and driver safety
- Vehicle routing: monetary cost and travel time

To our knowledge, bi-objective search not supported in PDDL

Bi-objective search

- **Two** objective functions C_1 , C_2
- **Dominance relation**:

 $(a,b) \prec (a',b')$ iff $a \leq a'$ and $b \leq b'$ but $(a,b) \neq (a',b')$ Pareto-optimal set: contains all *non-dominated* solutions

Bi-Objective Search Algorithms

- State-of-the-art NAMOA*dr (Pulido et al., 2015).
- ► Dominance check: Does the newly found path to a state s is dominate (or *is dominated by*) a previously found path to *s*.

Dominance checking has a big impact in performance.

A Simple and Fast Bi-Objective Search Algorithm

Carlos Hernández¹, William Yeoh², Jorge A. Baier³, Han Zhang⁴, Luis Suazo¹ and Sven Koenig⁴

 g_2

Domination check: An example

Our Contribution: Bi-Objective A*

Highlights of Bi-Objective A* (BOA*)

- 2. Simple. Resembling standard A*.
- 3. The heuristic functions h_1 and h_2 are consistent.

Experimental Evaluation

- ► We compare to:
 - ► NAMOA*dr (Pulido et al., 2015)
 - ► BOA* with standard linear-time dominance checking (sBOA*),
- Bi-Objective Dijkstra (BDijkstra), and Bidirectional Bi-Objective Dijkstra (BBDijkstra) (Sedeño et al., 2019).
- ► We use 5 road maps from the "9th DIMACS Implementation Challenge: Shortest Path".
- seconds in the calculation of the average.

Norr Varla (NIV)				
$\frac{100 \text{ rew tork City (N1)}}{264.246 \text{ states} 720.100 \text{ sdass} \left[-100 \text{ sp sware ss} \right]}$				
204,540 stat	Selved	Vedges, so	$\frac{ s = 199 \text{ OB}}{M_{\text{OP}}}$	i average
	Solved	Average	Max	Min
NAMOA*	50/50	15/.1/	1,936.36	0.02
SBOA*	50/50	9.75	148.65	0.10
NAMOA*dr	50/50	0.65	4.99	0.11
BOA*	50/50	0.32	1.95	0.11
BBDijkstra	50/50	1.94	23.43	0.26
BDijkstra	50/50	2.55	21.16	0.17
Florida (FL)				
1,070,376 stat	es, 2,712,7	98 edges, .	sols = 739	on average
	Solved	Average	Max	Min
NAMOA*	43/50	812.48	3,298.90	1.42
sBOA*	46/50	349.64	1,238.25	0.43
NAMOA*dr	50/50	19.66	329.79	0.43
BOA*	50/50	4.59	60.54	0.43
BBDijkstra	50/50	91.36	1,772.48	1.11
BDijkstra	50/50	158.33	2,722.69	0.77
	50000 BD)ijkstra		
	45000 - NAM	BOA* 10A*dr		
ds)	40000 -		-	
econ	35000 -			
le (se	30000 -			
untin L	25000 -			
Cumulative R	20000 -			
	15000 -			
	10000 -		<i>i</i> –	
	5000 -		,i -	
	0 10	0 20 30 40	50 60 70 80	

Conclusions and Future Work

- \blacktriangleright BOA* resembles standard A*.
- ► BOA* is orders-of-magnitude faster than state-of-the-art.
- Research directions: bounded-suboptimal bi-objective search and multi-objective search.

Runtime (sec) on 50 instances. After 3,600 seconds, we use 3,600

- # Instance Cumulative runtime on 74 LKS instances. The instances on the x-axis are
 - ordered in increasing runtime of BOA*.

We present BOA* a simple and fast Bi-Objective A* search algorithm.