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Bi-objective search has many applications

I Path-planning in robotics: distance and battery consumption
I HAZMAT transport in cities: travel time and risk of exposure for

residents
I Cycling: distance and driver safety
I Vehicle routing: monetary cost and travel time

To our knowledge, bi-objective search not supported in PDDL

Bi-objective search

I Two objective functions C1, C2

I Dominance relation:

(a, b) ≺ (a′, b′) iff a ≤ a′ and b ≤ b′ but (a, b) 6= (a′, b′)
I Pareto-optimal set: contains all non-dominated solutions

(10, 5) ≺ (10, 8), (10, 5) ⊀ (8, 6)

Bi-Objective Search Algorithms

I State-of-the-art NAMOA*dr (Pulido et al., 2015).
I Dominance check: Does the newly found path to a state s is dominate

(or is dominated by) a previously found path to s.
Dominance checking has a big impact in performance.

Domination check: An example

When we find a new path to a state we need to check whether or not the cost
of the newly found path is dominated/dominates previously found paths. This

is a linear-time check. In the figure the path with cost (8,6) is dominated.

Our Contribution: Bi-Objective A*

Highlights of Bi-Objective A* (BOA*)

1. Dominance checking in constant time (instead of linear time).

2. Simple. Resembling standard A*.

3. The heuristic functions h1 and h2 are consistent.

4. The Open list is sorted lexicographically by (f1,f2).

5. For each state s, BOA* maintains a gmin
2 (s).

In the example above, right before the path (8,6) is discovered, gmin
2 (s) = 4

we check whether (8, 6) is dominated by simply evaluating gmin
2 (s) = 4 ≤ 6

Theorem: BOA* computes a cost-unique Pareto-optimal solution set.

Experimental Evaluation

I We compare to:
I NAMOA*dr (Pulido et al., 2015)
I BOA* with standard linear-time dominance checking (sBOA*),
I Bi-Objective Dijkstra (BDijkstra), and Bidirectional Bi-Objective Dijkstra

(BBDijkstra) (Sedeño et al., 2019).

I We use 5 road maps from the “9th DIMACS Implementation Challenge:
Shortest Path”.

I Runtime (sec) on 50 instances. After 3,600 seconds, we use 3,600
seconds in the calculation of the average.
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Cumulative runtime on 74 LKS instances. The instances on the x-axis are
ordered in increasing runtime of BOA*.

Conclusions and Future Work

I We present BOA* a simple and fast Bi-Objective A* search algorithm.
I BOA* resembles standard A*.
I BOA* is orders-of-magnitude faster than state-of-the-art.
I Research directions: bounded-suboptimal bi-objective search and

multi-objective search.


