
A Simple and Fast Bi-Objective Search Algorithm

Carlos Hernández1, William Yeoh2, Jorge A. Baier3, Han Zhang4, Luis Suazo1 and Sven Koenig4

1Departamento de Ciencias de la Ingenieŕıa, Universidad Andrés Bello, Chile 2Department of Computer Science & Engineering, Washington University in St. Louis, USA
3Departamento de Ciencia de la Computación, Pontificia Universidad Católica de Chile, Chile 4Department of Computer Science, University of Southern California, USA

Bi-objective search has many applications

I Path-planning in robotics: distance and battery consumption
I HAZMAT transport in cities: travel time and risk of exposure for

residents
I Cycling: distance and driver safety
I Vehicle routing: monetary cost and travel time

To our knowledge, bi-objective search not supported in PDDL

Bi-objective search

I Two objective functions C1, C2

I Dominance relation:

(a, b) ≺ (a′, b′) iff a ≤ a′ and b ≤ b′ but (a, b) 6= (a′, b′)
I Pareto-optimal set: contains all non-dominated solutions

(10, 5) ≺ (10, 8), (10, 5) ⊀ (8, 6)

Bi-Objective Search Algorithms

I State-of-the-art NAMOA*dr (Pulido et al., 2015).
I Dominance check: Does the newly found path to a state s is dominate

(or is dominated by) a previously found path to s.
Dominance checking has a big impact in performance.

Domination check: An example

When we find a new path to a state we need to check whether or not the cost
of the newly found path is dominated/dominates previously found paths. This

is a linear-time check. In the figure the path with cost (8,6) is dominated.

Our Contribution: Bi-Objective A*

Highlights of Bi-Objective A* (BOA*)

1. Dominance checking in constant time (instead of linear time).

2. Simple. Resembling standard A*.

3. The heuristic functions h1 and h2 are consistent.

4. The Open list is sorted lexicographically by (f1,f2).

5. For each state s, BOA* maintains a gmin
2 (s).

In the example above, right before the path (8,6) is discovered, gmin
2 (s) = 4

we check whether (8, 6) is dominated by simply evaluating gmin
2 (s) = 4 ≤ 6

Theorem: BOA* computes a cost-unique Pareto-optimal solution set.

Experimental Evaluation

I We compare to:
I NAMOA*dr (Pulido et al., 2015)
I BOA* with standard linear-time dominance checking (sBOA*),
I Bi-Objective Dijkstra (BDijkstra), and Bidirectional Bi-Objective Dijkstra

(BBDijkstra) (Sedeño et al., 2019).

I We use 5 road maps from the “9th DIMACS Implementation Challenge:
Shortest Path”.

I Runtime (sec) on 50 instances. After 3,600 seconds, we use 3,600
seconds in the calculation of the average.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 10 20 30 40 50 60 70 80

C
um

ul
at

iv
e

R
un

tim
e

(s
ec

on
ds

)

Instance

BDijkstra
BOA*

NAMOA*dr

Cumulative runtime on 74 LKS instances. The instances on the x-axis are
ordered in increasing runtime of BOA*.

Conclusions and Future Work

I We present BOA* a simple and fast Bi-Objective A* search algorithm.
I BOA* resembles standard A*.
I BOA* is orders-of-magnitude faster than state-of-the-art.
I Research directions: bounded-suboptimal bi-objective search and

multi-objective search.

