Computing Close to Optimal Weighted
Shortest Paths in Practice

Nguyet Tran*, Michael J. Dinneen, Simone Linz
School of Computer Science, University of Auckland, New Zealand

*Email: ntra770@aucklanduni.ac.nz

This paper proposes a new practical method for the weighted region problem
(WRP). The objective of WRP is to find a minimum cost path between two
vertices among different regions where each region incurs a traversal cost per
unit distance.

Currently, there is no practical algorithm that solves this problem exactly.
Among the approximation methods that solve instances of WRP, there is a
limited number of algorithms that compute paths whose lengths are close to
optimal, which we call very-close optimum paths. However, they are considered
as theoretical methods. On the other hand, algorithms for solving WRP that
can be applied to practical data sets (using decomposition ideas or heuristics)
are not guaranteed to find a very-close optimum path within an acceptable
amount of time.

In this paper, we consider an alternative method for solving WRP that
exploits Snell’s law of physical refraction. We compare the performance of our
new algorithm with that of two existing algorithms, using at least 500 test cases
for each such comparison. The experimental results show that our algorithm
returns a very-close optimum weighted shortest path in reasonable time.

Introduction

o W = (T,FE,V): a continuous two-dimensional workspace, where T is a
set. of non-overlapping regions, FE is the set of edges and V is the set of
vertices of the regions in 7'

e Each region t; € T is a triangle, and assigned a unit weight (or cost)
w; > 0.

e For each edge e; € T, if ¢; has two adjacent triangles ¢, and t;, the unit
weight of e; is w(e;) = min(w,, wy), where w, and wy are the unit weights
of t, and tp, respectively. Otherwise, if e; is only on one triangle ¢, ¢€; is
a border edge, and w(e;) = wg.

e Let p and ¢ be two points on a region t; € T', D(p,q) = w - d(p, q) is the
weighted length (or cost) between p and ¢, where w is the unit weight of
t; or the edge that the segment (p,q) is on, and d(p, q) is the Euclidean
distance between p and q.

For a pair of two vertices u,v € V, the weighted region problem (WRP)
asks for the minimum cost (or the weighted shortest) path P*(u,v) = (u =
00,01, --.,0k,0ktr1 = v) such that the weighted length Zf:o D(0;,0i11) is min-
imum, where every o;, i € {1,...,k}, called a crossing point, can be a point on
an edge in F or a vertex in V.

Applications

The regions in 1" can be smooth flat, desert, rocks, water, forest, grassland,
etc. The energy-consuming levels of a robot can be different depending on the
moving regions. Finding a weighted shortest path turns into finding an optimal
energy path (or a minimum time path) for the robot. WRP is a classical path
planning problem, with many applications in robotics, geographical planning
and manufacturing.

Difficulties

The problem is unknown NP-hard or not. Currently, there is no known
polynomial or exponential time algorithm for finding the exact weighted shortest
path. The exiting algorithms to solve WRP are all approximations.

Existing approaches

e Exploiting Snell’s law (impractical solutions)

e Using heuristic methods (unpredictable results)

e Applying decomposition ideas, with a grid of cells or a graph of Steiner-
points (time-consuming for a very-close optimal result)

Our approach

Our target is a very-close optimal solution, thus we create the first practical
solution exploiting Snell’s law.

SCE I ENEHRE TS

o Scenario 1: Compare against Quadratic Programming

o Scenario 2: Compare against the Steiner-Point method (Placing from m =
6 to m = 400 discrete points on each edges in E, in 500 test cases)

Scenario 2:

5000

4000 -

3000 A

2000 -

1000 A

0

0 1DIOO 20IOD 30I00 40I00 5000
Figure 1. An example of WRP problem with three very-close optimum paths

between vertices (0 and 1), (2 and 3) and (4 and 5).

and a

(a) Illustration of Snell’s law at 7; (b) SP(u,v) and Snell rays from u crossing a k where 5 = (e1,. = ,‘Eik) where 5 = (E?lﬁ*-
o : P " : with directions of four with Snell path F;
critical point at r;. edge sequence .S, where S satisfies the sequence » N . ,
arrangement and T = (1,4,5 1,3) paths from Py to Py. Griticall point 6y
{ : B ¥ I j'l 5 TECEEE gt -

b; =b. ¢; =cp, v

Figure 2. Illustration of building the D-graph.

Pk

P1 t
P2 €1

| P3
P2 = P3| €2 a9

M

Figure 3. Illustration of Snell rays

Proposed method

1. Weighted shortest path crossing an edge sequence S

S = (e1,...,er): an ordered sequence of k edges, where three consecutive
edges in S cannot be in the same triangles. Otherwise, we present how to process
it in the paper. W = (wy, ..., wg): the weight list of S (see Figure 3b).

Snell’s law: P(u,v) = (v = 79,71,...,7k,Tkr1 = v) has the minimum
weighted length crossing S if and only if at every crossing point r; on e;, for which
r; 18 not an endpoint of ¢;, the following condition holds: w;_1 sin o; = w; sin 3;
(see Figure 3a).

Snell ray: P, = (u,a1,a2,...,aq4, R}), where every a; is a point on e;,
obeying Snell’s law, and Ry is the out-ray of the path at e, € S (see Figure 3b).

Snell path: P(u,v) = (u =1rg,71,...,7Tk, "1 = v) is a Snell path if Snell’s

law is obeyed at each r;, and r; must be on the interior of e;, which cannot be
one of the two endpoints of e; (see Figure 3b).

Two Snell rays P, = (u,by,...,b;, R?) and P. = (u,cq,.. ., Cj, RS), where
b1 # c1, cannot intersect each other (the case in Figure 3b will never happen).

Finding the Snell path P(u,v) crossing S (approximately):

From the middle point m;y of e1, create a Snell ray P, = (u,m1,..., R}").
If egy1, where epy1 = (v,v), is on the left (resp. right) of R}*, then the Snell
ray that hits v must cross only the parts from p; to m; (resp. from m; to g¢;).
Thus, we trim e; = (p;, q;) to (p;, m;) (resp. (my,q;)). This process is iterated
until P, hits v, or all edges in S are trimmed such that d(p;,q;) < &, where 9
be an extremely small value. However, if the Snell path crosses an endpoint of
any original e; in S, this process will be stopped.

2. Main algorithm

D-graph: an undirected graph (Vp, Ep), where Vp = V UV, with V. being
the set of critical points. An edge in Ep between two points v and v in Vp is
created if there exists a Snell path between u and v, which only cross the
interiors of the edges in E. The weight of every edge between u and v in
Ep is the minimum weighted length among all possible Snell paths between u
and v.

Funnel: f = (r,S,W), where S = (e1,...,ex), W = (wg,...,wip_1), 7 €V
is the root of f, and the last edge ex € S is the bottom of f (see Figure 3c).

e In a funnel f, the Snell path from » to v crossing S can go around the
adjacent edges at r and v with critical points (at most four possible paths,
Py to PJ) (see Figure 3¢ and 3d). We present in the paper how to avoid
finding all of these four Snell paths.

e After finding the Snell path from r to v, let S; = So(c1), So = So(cs), and
W1 and W5 be two weight lists with respect to S7 and Ss, respectively. One
of the following three conditions holds: (i) two new funnels f; = (r, S1, W1)
and fo = (r, 59, Ws) are created, (ii) only one new funnel f; = (r, S1, W)
or fo = (r, S5, Ws) is created, (iii) no new funnel is created.

Main idea:

e Building a D-graph for W = (T, E, V).

e Applying a shortest path graph algorithm on the D-graph to find the
weighted shortest path between any pair of vertices.

Building D-graph:
Using a queue (). For each vertex u € V, initializing funnels f = (r, S, W),

Number of regions 5 10 15 20 25 30
Our method’s average times 0.02 0.11 0.37 0.75 1.82 3.03
average times 1.13 3.33 5.80 8.94 12.64 17.32
m =400 %D 0.00015% | 0.00029% | 0.00056% | 0.0010% | 0.0013% | 0.0018%

e Qur results are always shorter in weighted length.

e Our running times are faster in case a close to an optimal path is needed.

where r = u and S contains only one edge opposite to u. Pushing the funnels
into (). Popping one funnel f = (r,.5,W) out @), we then find the Snell path
from the root r to the vertex v, which is opposite to the last edge ex in S,
crossing S. If the Snell path between r and v crossing S exists, updating the
D-graph. Then, the new funnels (at most two) corresponding to f are created
and pushed into). The process will be stopped when @ is empty (see Figure
2).

Note: In practice, finding a Snell path will easily cross a vertex in V' and
stop. Thus, not too many funnels will be created.

o 2 4 6 8 Ui 12 14 (c)Funnel f=(r,S,W), (d) Funnel f = (r,S,W),
.ay Ek)

and 1ts

	Slide Number 1

