Constrained Flight Planning under Weather Uncertainty

A constrained stochastic shortest path problem consists of:
- an SSP S
- a set of constraints C, where each constraint:
 - comes with a secondary cost function c_i
 - bounds the expected cost of this function by some constant
 - e.g., $E[c_i] \leq 30$ minutes

A solution for a C-SSP is a potentially stochastic policy which minimizes costs and satisfies constraints over expectation.

Constrained Stochastic Shortest Path Problem

- Compute a flight plan for a given aircraft mission which minimizes fuel consumption,
- underlying uncertain weather effects
- meets time and convection constraints

In other words: we want to solve a constrained stochastic shortest path problem (C-SSP)

A solution for an SSP is a deterministic policy (mapping from states to actions) which minimizes costs.

Stochastic Shortest Path Problem

A Stochastic Shortest Path Problem S consists of:
- a set of states S
 - current position, speed, altitude
- a set of actions A
 - fly to waypoint, change altitude, change speed
- a cost function C
 - represents fuel consumption
- an initial state s_0 and a set of goal states S^*
- a probabilistic transition function $P(y_{s,a} | s)$
 - requires access to a weather forecast model

We use a black box model that computes state transitions π

A solution for an SSP is a deterministic policy (mapping from states to actions) which minimizes costs.

Column Generation

Column Generation – Solve the problem ignoring constraints

1. Solve the problem ignoring constraints
2. Evaluate constraints
3. Modify problem to improve the current solution
 - adaptation of the primary cost function

- We can use any SSP algorithm to solve this subproblem
- Computes a deterministic policy with associated costs

Column Generation – Evaluate constraints on policy

- If no constraint is violated and solution cannot be improved \Rightarrow return solution
- Otherwise, modify current subproblem:
 - change problem such that c can not be optimal \Rightarrow original problem with shifted cost function
 - shifted costs explore different trade-offs between constraints and cost

Heuristic Decomposition

- Incorporate constraints in primary cost function via scalarisation
- Scalarisation: new cost function becomes a linear combination of primary and secondary cost functions
- Determine: remove uncertain weather outcomes and use average travel time and fuel consumption for transitions
- Decompose: the resulting problem in a 2D and a 3D problem
 - horizontal (2D) planning phase computes least cost path based on the earth surface
 - vertical (3D) planning phase assigns each node in the 2D plan an altitude and speed level

Empirical Evaluation

- Evaluate on real-world data set
- 3 short, medium, and long distance flights
- weather data from June 2018
- BADA aircraft performance model
- Time window constraints
- Convection constraints
- Focus on deterministic policies

Contribution

- A C-SSP formulation of constrained flight planning under uncertainty
- A new algorithm for C-SSPs based on Column Generation
- An alternative approach that decomposes the problem into a 2D search and a greedy choice of altitude and speed from a set of heuristic strategies
- We evaluate on real flight routes with real weather data

Stochastic and Deterministic Policies

- If required, we can select the best deterministic policy
- Deterministic policy is not guaranteed to satisfy constraints
- Finding an optimal deterministic policy is NP-complete

Alternative approach to Column Generation: Heuristic Decomposition based on Determination

Constrained Flight Planning under Weather Uncertainty

Common approach for constrained deterministic shortest path problems based on linear programming.

1. Solve the problem ignoring constraints
2. Evaluate constraints
3. Modify problem to improve the current solution
 - adaptation of the primary cost function

- We can use any SSP algorithm to solve this subproblem
- Computes a deterministic policy with associated costs

Column Generation in Practice

Each policy corresponds to a column in the LP
- LP solver computes a solution to the LP:
 - solution is a convex combination of policies
 - i.e., a probability distribution over deterministic policies
 - guarantees minimum primary cost
 - respects constraints over expectation

Stochastic and Deterministic Policies

- If required, we can select the best deterministic policy
- Deterministic policy is not guaranteed to satisfy constraints
- Finding an optimal deterministic policy is NP-complete

Empirical Evaluation

- Time window constraints
- Convection constraints
- Focus on deterministic policies

Contribution

- A C-SSP formulation of constrained flight planning under uncertainty
- A new algorithm for C-SSPs based on Column Generation
- An alternative approach that decomposes the problem into a 2D search and a greedy choice of altitude and speed from a set of heuristic strategies
- We evaluate on real flight routes with real weather data

Column Generation

- If no constraint is violated and solution cannot be improved \Rightarrow return solution
- Otherwise, modify current subproblem:
 - change problem such that c can not be optimal \Rightarrow original problem with shifted cost function
 - shifted costs explore different trade-offs between constraints and cost

Constrained Flight Planning under Weather Uncertainty

A Constrained Flight Planning under Weather Uncertainty consists of:
- a set of constraints C, where each constraint:
 - comes with a secondary cost function c_i
 - bounds the expected cost of this function by some constant
 - e.g., $E[c_i] \leq 30$ minutes

A solution for a C-SSP is a potentially stochastic policy which minimizes costs and satisfies constraints over expectation.

Constrained Stochastic Shortest Path Problem

- Compute a flight plan for a given aircraft mission which minimizes fuel consumption,
- underlying uncertain weather effects
- meets time and convection constraints

In other words: we want to solve a constrained stochastic shortest path problem (C-SSP)

A solution for an SSP is a deterministic policy (mapping from states to actions) which minimizes costs.

Stochastic Shortest Path Problem

A Stochastic Shortest Path Problem S consists of:
- a set of states S
 - current position, speed, altitude
- a set of actions A
 - fly to waypoint, change altitude, change speed
- a cost function C
 - represents fuel consumption
- an initial state s_0 and a set of goal states S^*
- a probabilistic transition function $P(y_{s,a} | s)$
 - requires access to a weather forecast model

We use a black box model that computes state transitions π

A solution for an SSP is a deterministic policy (mapping from states to actions) which minimizes costs.