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• We formulated a zone based path finding problem (ZBPF)
• Under uncertainty 
• Partial Observability

• We presented a novel formulation of policy optimization
• Based on difference-of-convex functions (DC) programming

• We developed a simulator for ZBPF using Unity3D game engine

Our Simulator

3D Maps (“SmallCube” and “TwoFloor”)

• Settings 
• 10 and 20 agents for SmallCube and TwoFloor
• Capacity of was uniformly sampled 
from [1,3] and [1,4].

2D Open Grids

• Settings

• 4x4 grid, 2 agents to 10x10 grid, 10 agents

• Starting and goal locations were the top and bottom rows. 

• The capacity of each zone was sampled uniformly from a range e.g., [1,4]

• 𝑡𝑚𝑖𝑛=1, 𝑡𝑚𝑎𝑥=5 (binomial distribution as travel time dist.)

• Comparison against

• DCRL (our approach); VPG (vanilla Policy Gradient); 

• SP (each agent follows shortest path)

• HA (multiagent Q-learning based for hybrid action space)

• Results:
• Our approach DCRL provides much better SOC quality can minimize congestion 
• VPG suffers due to lack of effective credit assignment
• HA isn’t able to handle a large number of agents

• A graph 𝐺 = (𝑉, 𝐸)
• Each zone has a capacity
• A set of agents with sources and destinations
• Crossing two zones requires minimum and maximum time

Objective: Minimize travel time and Congestion

• Simulator: Unity 3D game engine
• The spheres are the zones, and cubes are the agents.
• Highlighted zone: there is congestion
• Highlighted agent: reached destination

TwoFloor 10x10 Grid Map

How to navigate autonomous vehicles in a partially observable 
environment with uncertainty?

• State
• State is a tuple of three components: ۦ𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑧𝑜𝑛𝑒, 𝑛𝑒𝑥𝑡 𝑧𝑜𝑛𝑒, ۧ𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

• Hybrid Action (discrete and continuous)
• Discrete action: which zone to go
• Continuous action: with what speed 

• An example 
• An agent is newly arrived in zone 1 at time 𝑡. 
• We have 𝑠𝑡 = ൻ𝑧1, ۧΦ,Φ , 𝑎𝑡 = ൻ𝑧2, ۧ0.5 .

• The realized time (say, 2) is sampled from a binomial distribution.

• We have 𝑠𝑡+1 = ൻ𝑧1, ۧz2, 1 , 𝑎𝑡+1 = 𝑛𝑜𝑜𝑝.

• Transition Function (exponential family)

• 𝑝 𝑠′𝑖 𝑠𝑖 , 𝑎𝑖 , 𝜈𝑖 = 𝑓 𝑠𝑖 , 𝑎𝑖 , 𝑠′𝑖 exp{𝜈𝑖𝜙 𝑠𝑖 , 𝑠′𝑖 −𝒜(𝜈𝑖)}

• Uncertainty movement can be modeled
• Applicable in several applications

• Partial Observation
• Agents can only observe local neighboring zones

• Reward Function
• A positive reward for reaching the goal
• A negative reward for time step or congestion

𝑡𝑚𝑖𝑛 = 1, 𝑡𝑚𝑎𝑥 =4, 𝜈 = 0.5 (continuous action)

𝐓𝐫𝐚𝐯𝐞𝐥 𝐓𝐢𝐦𝐞 𝐒𝐚𝐦𝐩𝐥𝐢𝐧𝐠

• Original Objective Function

𝐽 𝝅, 𝝁 =෍

𝜍

𝑝 𝜍 𝐺(𝜍)

• Why DC programming?
• The objective is non-linear and nonconvex. Direct optimization is difficult.
• Nonlinear solvers cannot scale to large number of agents.

• Objective Function in CCP

min{𝑢 𝑥 − 𝑣 𝑥 ∶ 𝑥 ∈ Ω}
𝑢 𝑥 and 𝑣(𝑥) are convex functions 

Concave-Convex Procedure (CCP) can solve it iteratively. 

𝑥𝑘+1 = argimin{𝑢 𝑥 − 𝑥𝑇𝛻𝑣 𝑥𝑘 ∶ 𝑥 ∈ Ω}

DC Programming

max
𝜋,𝜇
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𝐴 𝜇𝑖 𝑎𝑖 , 𝑠𝑖 , 𝑦𝑖

fixed concave linear concavefixed

With known model
Get a better policy 𝜋𝑘+1 and 𝜇𝑘+1 iteratively

General nonlinear solver can be used to optimize it

Planning

Model free setting
Assume parameterized policy 𝜋 𝜃 and 𝜇𝜃
Multiagent credit assignment (Low variance gradient estimates)

Learning

Experimental Results

Agent’s Decision Model

Problem Formulation

Our Contributions

Motivation Policy Optimization in DC Form
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