

School of **Information Systems**

Reinforcement Learning for Zone Based Multiagent Pathfinding Under Uncertainty

Jiajing Ling, Tarun Gupta, Akshat Kumar {jjling.2018, akshatkumar}@smu.edu.sg, tarun.gupta@cs.ox.ac.uk

Motivation

How to navigate autonomous vehicles in a partially observable environment with uncertainty?

Our Contributions

Policy Optimization in DC Form

Original Objective Function

$$f(\boldsymbol{\pi},\boldsymbol{\mu}) = \sum_{\varsigma} p(\varsigma) G(\varsigma)$$

Why DC programming?

- The objective is non-linear and nonconvex. Direct optimization is difficult.
- Nonlinear solvers cannot scale to large number of agents.

DC Programming

 $\Box\min\{u(x) - v(x) : x \in \Omega\}$ $\Box u(x)$ and v(x) are convex functions □Concave-Convex Procedure (CCP) can solve it iteratively.

- We formulated a zone based path finding problem (ZBPF)
 - Under uncertainty
 - Partial Observability
- We presented a novel formulation of policy optimization
 - Based on difference-of-convex functions (DC) programming
- We developed a simulator for ZBPF using Unity3D game engine

Problem Formulation

- A graph G = (V, E)
- Each zone has a capacity
- A set of agents with sources and destinations
- Crossing two zones requires minimum and maximum time
 - **Objective: Minimize travel time and Congestion**

Our Simulator

- Simulator: Unity 3D game engine
- The spheres are the zones, and cubes are the agents.
- Highlighted zone: there is congestion
- Highlighted agent: reached destination

Agent's Decision Model

• State

- State is a tuple of three components: (*current zone*, *next zone*, *remaining time*)
- Hybrid Action (discrete and continuous)
 - Discrete action: which zone to go
 - Continuous action: with what speed
- An example
 - An agent is newly arrived in zone 1 at time t.
 - We have $s_t = \langle z_1, \Phi, \Phi \rangle$, $a_t = \langle z_2, 0.5 \rangle$.
 - The realized time (say, 2) is sampled from a binomial distribution.

2D Open Grids

- Settings •
 - 4x4 grid, 2 agents to 10x10 grid, 10 agents
 - Starting and goal locations were the top and bottom rows.
 - The capacity of each zone was sampled uniformly from a range e.g., [1,4]
 - $t_{min}=1$, $t_{max}=5$ (binomial distribution as travel time dist.)
- **Comparison against**
 - DCRL (our approach); VPG (vanilla Policy Gradient);
 - SP (each agent follows shortest path)
 - HA (multiagent Q-learning based for hybrid action space)
- **Results:**

- Our approach DCRL provides much better SOC quality can minimize congestion
- VPG suffers due to lack of effective credit assignment
- HA isn't able to handle a large number of agents

- Transition Function (exponential family)
 - $p(s'^{i}|s^{i}, a^{i}, \nu^{i}) = f(s^{i}, a^{i}, s'^{i}) \exp\{\nu^{i}\phi(s^{i}, s'^{i}) \mathcal{A}(\nu^{i})\}$
 - Uncertainty movement can be modeled
 - Applicable in several applications
- **Partial Observation**
 - Agents can only observe local neighboring zones
- **Reward Function**
 - A positive reward for reaching the goal
 - A negative reward for time step or congestion

		0.11 0.02 4x4 N4 OCRL × VPG II HA	0.12 0.04 0.04 0.04 0.04 0.04 0.04 0.04	50 0		31.62 0.5 0.67 8x8 N12 CRL × VPG II HA NGESTIO	1.74 4.15 8x8 N20	100 50 0		0.97 3.21 10x10 N20 CRL % VPG II HA	A	
 3D Maps ("SmallCube" Settings 10 and 20 agents for Capacity of was unifor from [1,3] and [1,4]. 					SmallCube and TwoFloor			120 100 80 60 40 20 0	3.66 4.37 SmallCub	0.61	112.49	
			ΛοΙ							ngestio	n	
Acknowledgements												
	his researd cademic R		•	-					Singap	ore ur	nder its	