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Research Questions
•How best to enable robots to represent and reason with qualita-

tive and quantitative descriptions of incomplete domain knowl-
edge and uncertainty?
“Books are usually in the library”
“I am 90% certain robotics book is in the library”
•How best to enable robots to learn interactively and cumulatively

from sensor inputs and limited human feedback?
Camera images, verbal cues, different surfaces
“Robot with weak arm cannot lift heavy box”
•How best to enable designers to understand the robots’ behavior

and to establish that it satisfies desirable properties?
“Why did you go to the kitchen?”
“How likely is it that the engineer is in the office?

Core Ideas and Inspiration
• Theories of human/animal cognition and motor control.
• Theories of intention, affordance, explanation, observation.
•Qualitative and quantitative reasoning with incomplete knowl-

edge at different abstractions; tight coupling between logician
and statistician.
• Interactive and cumulative learning of relevant concepts.

Architecture Overview
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Architecture combines strengths of non-monotonic logical reason-
ing, probabilistic reasoning, and interactive learning.

Illustrative Domain
Robot Assistant (RA) domain:
• Find and move target objects (book, cup, printer) to particular

places (library, office, workshop, kitchen) or people.
•Humans have role (engineer, manager); object attributes color,

shape, size.
• Estimate occlusion of objects, stability of structures.
•Answer questions in simulated and real-world scenarios.

Coarse Resolution Domain Representation
• Transition diagrams described as statements of ALd.
• System description D with sorted signature Σ and axioms.
• Σ has sorts, statics, and fluents. For RA domain:

next to(place, place), loc(thing) = place, stable(object),

in hand(robot, object), obj relation(relation, object, object)

• Σ has actions. For RA domain:
move(robot, place), pickup(robot, object),

putdown(robot, object), exo move(object, place)

•Axioms: constraints, causal laws, executability conditions,
move(rob1, P l) causes loc(rob1) = Pl

loc(O) = Pl if loc(rob1) = Pl, in hand(rob1, O)

obj relation(above, A,B), I) if obj relation(below,B,A), I)

impossible pickup(rob1, O) if loc(rob1) 6= loc(O)

•HistoryH with prioritized defaults in initial state.
initial default loc(X) = library if book(X)

initial default loc(X) = office if book(X),

loc(X) 6= library

• Compute answer sets of CR-Prolog program Π(D,H).
•Non-monotonic logical reasoning essential for robotics+AI.

Theory of Affordances and Intentions
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•Affordance: attributes of objects, agents, in terms of actions.

•Unexpected success/failure; intentional actions, observations.

• Principles of persistence, non-procrastination, and relevance.

• Expand D and H; mental fluents and actions; axioms for action
effects, start/stop activities; model attempted actions.

Fine Resolution Domain Representation

• Refinement: describe (DH) at finer resolution (DL).

• Theory of observation: knowledge fluents + actions.

• Randomize and zoom to DLR(T ) for T = 〈σ1, a
H , σ2〉.

• Formal relationships between descriptions.

loc(rob1) = office

move(rob1, kitchen)

move(rob1, office)

loc(rob1) = c6

loc(rob1) = c5

move(rob1, c2) move(rob1, c1) move(rob1, c5) move(rob1, c6)

loc(rob1) = c1

loc(rob1) = c2

move(rob1, c5)

move(rob1, c2)

r1 (office) r2 (kitchen)

loc(rob1) = kitchen
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• Separation of domain-independent/specific knowledge.

• Probabilistic model of uncertainty in sensing and actuation.

• Fine-resolution execution with DLR(T ) and probabilities, e.g.,
POMDP policy. Add coarse-resolution outcomes toH.

Interactive Learning

• Incomplete knowledge; unexpected or sub-optimal outcomes.

• Labeled samples; limited human time and expertise; actions with
delayed outcomes.

• Incrementally learn previously unknown actions, axioms.

•Verbal descriptions from humans: “Robot is labeling fairly big
textbook”, “Robot labeled small fragile cup”

label(R,O) causes labeled(O)

• Relevance and relational inference guide active exploration or re-
active execution with knowledge or reinforcement.

• Represent experiences relationally (binary decision tree); cumu-
lative learning and construct new axioms.

¬stable(A) if relation(above, A,B), surface(B, irregular)

impossible grasp(rob1, C) if weight(C, heavy),

arm(rob1, electro)
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Architecture combines non-monotonic logical reasoning, deep
learning, and interactive learning, with reasoning and learning in-
forming and guiding each other.

Theory of Explanations and VQA

• Characterize explanations: abstraction, specificity, verbosity.

•Methodology for constructing explanations interactively.

•Visual Question Answering (VQA).

• Complementary strengths of non-monotonic logical reasoning,
deep learning, and inductive learning.

Experimental Results

1. Increases accuracy and reduces number of actions executed.
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2. Desired accuracy (stability, occlusion) with smaller dataset.
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3. Actions and axioms learned with high precision and recall.

Action Recall Precision Axioms Recall Precision
label 0.92 0.96 Normal 100% 98%
serve 0.88 0.95 Default 62% 78%

4. Minimal and correct plans with learned knowledge.

Conclusions + Future Work

• Step-wise refinement simplifies design and implementation, in-
creases confidence in behavior, promotes scalability.

• Precise relationship between descriptions at different resolutions.

• Reasoning directs interactive learning of domain dynamics.

• Explanations at desired level of abstraction.

• Further explore interplay between reasoning and learning.
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