Multi-Agent Path Finding on Real Robots

CHARLES UNIVERSITY PRAGUE

faculty of mathematics and physics

CHARLES UNIVERSITY PRAGUE

Roman Bartak, Jifi Svancara, Véra Skopkova,
David Nohejl, Ivan Krasicenko,
Charles University, Faculty of Mathematics and Physics, Czech Republic

Problem Formulation

Multi-Agent Path Finding (MAPF) deals with the problem of finding collision-free paths for a set of agents.
Each agent moves from its start location to its destination location in a shared environment represented by a

graph.

Some extensions:

 weighted arcs (distances)
« robustness (gaps between robots)
« rotations as primitive actions (in addition to move and wait)

1({2|3]|4
5|16|7(8
9 |10(11(12
13|14 15

What happens if abstract MAPF plans are executed on real robots?

MAPF Scenario

Software (in Java) to define MAPF problems on a grid, solve them using various abstract
models (a reduction-based solver in the Picat programming language), visualize and simulate
the plans, and translate the plans to executable code for Ozobot Evo robots.

Executable cof

Program GUI

Solver Map Definition | Agents | R|

Solver = Settings = Actions
Map:
Solver: | Classic-+Wait -
Load Save
Name: solutionl

Create new map:

Custom bounds o

Map size
HESUES 4 Xa Create
solutionl
Edges:
Add Remove | | None
h h start
Remove | | Hide | | Show itl
s WI
Abstract MaP: sions of agents
Load | | Save | | Ozo Export andgoal |ocat!!
Simulation: | Play | Stop = Path display scale O
) 2000 4000 6000 8000 {10000 12000 14000 {16000 18000 20000 22000 24000 26000 28000
Gl f f f T t t t t t f f t t f t
. AS—
AgentOm || Igoiback ‘qoipad |goipad Igoile&ipad Igoipad Igoileltipad ‘qoirvghtip. |go;en7pad lgoipad I [T
Agent 1M | |go,ngm7p. ‘go,pad |go,pad |gc,nack |go,back |go,back ‘want,paa |go,back [gc,left,paa |
Ozobot Evo robot

de in Ozoblocly language

/,,JW‘T’.\’\’\’\
ttime reduces col//‘si;ns

Empirical Results

Computed Failed Runs Number of Total Time Max A time Comparison Of_ quality scores (1 f(?r the best
Collisions result; O for failure; sum over five different maps)

classic 500 500 | 200 500 | 275 500 19 493 152 161 - computed makespan (objective of solver)
classic+wait 500 500 | 500 500 | 212 500 | 360 410 | 500 500 . . A
classic+robustness 395 395 | 500 500 | 500 500 | 412 398 | 264 274 « failed runs (unfinished executions)
classic+wait+robustness | 3.95 3.95 5.00 5.00 5.00 5.00 2.79 3.08 5.00 5.00 « #collisions (I‘ObOtS touch but do not fa")
split 304 304 | 500 417 | 370 400 | 480 372 | 235 182 . . .
split+wait 3.04 3.04 500 500 273 5.00 41 350 | 500 500 - total time (real makespan during execution)
split+robustness 2.87 287 4.17 4.17 433 450 3.67 3.57 314 269 » max A time (difference between fastest and
spli watrobustness 287 287 | 500 500 | 500 500 | 38 329 | 500 500 slowest robot; all robots should finish at the
wsplit 197 LI5S | 500 500 | 38 500 | 499 488 | 500 500 E
w-split+robustness 19, 113 | 500 500 | 500 500 | 488 482 | 500 500 same time)

Best result in bold (larger values are better).

Contact us

Supported by the Czech Science Foundation under the project P103-19-02183S.

