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Problem Formulation

Multi-Agent Path Finding (MAPF) deals with the problem of finding collision-free paths for a set of agents.
Each agent moves from its start location to its destination location in a shared environment represented by a

graph.

Some extensions:

 weighted arcs (distances)
« robustness (gaps between robots)
« rotations as primitive actions (in addition to move and wait)
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What happens if abstract MAPF plans are executed on real robots?

MAPF Scenario

Software (in Java) to define MAPF problems on a grid, solve them using various abstract
models (a reduction-based solver in the Picat programming language), visualize and simulate
the plans, and translate the plans to executable code for Ozobot Evo robots.
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Empirical Results

Computed Failed Runs Number of Total Time Max A time Comparison Of_ quality scores (1 f(?r the best
Collisions result; O for failure; sum over five different maps)

classic 500 500 | 200 500 | 275 500 19 493 152 161 - computed makespan (objective of solver)
classic+wait 500 500 | 500 500 | 212 500 | 360 410 | 500 500 . . A
classic+robustness 395 395 | 500 500 | 500 500 | 412 398 | 264 274 « failed runs (unfinished executions)
classic+wait+robustness | 3.95 3.95 5.00 5.00 5.00 5.00 2.79 3.08 5.00 5.00 « #collisions (I‘ObOtS touch but do not fa")
split 304 304 | 500 417 | 370 400 | 480 372 | 235 182 . . .
split+wait 3.04 3.04 500 500 273 5.00 41 350 | 500 500 - total time (real makespan during execution)
split+robustness 2.87 287 4.17 4.17 433 450 3.67 3.57 314 269 » max A time (difference between fastest and
spli watrobustness 287 287 | 500 500 | 500 500 | 38 329 | 500 500 slowest robot; all robots should finish at the
wsplit 197 LI5S | 500 500 | 38 500 | 499 488 | 500 500 E
w-split+robustness 19, 113 | 500 500 | 500 500 | 488 482 | 500 500 same time)

Best result in bold (larger values are better).
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