TLdR: Policy Summarization for Factored SSP Problems Using **Temporal Abstractions**

Sarath Sreedharan = Siddharth Srivastava = Subbarao Kambhampati

Collaborative Agents

- Ability to effectively collaborate with people is a prerequisite for real world agents
- We would expect such agents to be capable of effectively communicating their plans with users
- Particularly challenging in stochastic setting

q

Existing Approaches

 Methods to simplify policy structure

Or

Summarize:

• Presenting state

Our Method

• Summary in terms of the subgoals to be achieved as part of the policy

Challenge: Extract subgoals abstractions of the policy automatically for a given policy

- Need to communicate policies

Policy Landmark

- We focus on goal based MDP formulations with fixed initial states
- Subgoals identified by extracting landmarks
- Where landmarks in stochastic settings defined in terms of execution sequence that leads to the goal rather than in terms of plans
- For policy landmark we only consider the execution sequences feasible under the given policy

"Facts/formulae and their relative ordering that needs to be satisfied by every feasible trace possible under the policy that leads to the goal"

- Present actions from representative states

Example: Travel planning domain

- **Consider a sample domain for** generating a travel plan
- **Domain consists of 30 grounded** fluents and 27 grounded actions
- Partial policy consists of 100 states

Extracting Landmarks

Convert it to landmark extraction for classical planning problem

- Constrain the model to only allow policy actions
- Generate an all outcome determinization
- Generate landmarks for determinized problem
- Further we can exploit the fact that most landmark extraction methods rely on delete relaxations – Consider a model with a simpler structure
 - Whose add effects are a union of all possible add effects

State: {(at_home), (uber_gift_card_1), (uber_gift_card_2)} Action: walk_to_garage

```
Original Action:
```

(:action walk_to_garage :parameters () :precondition (and (at_home)) :effect (and (at_garrage) (not (at_home)) (probabilistic 1/2 (and (car_running)) 1/2 (and (need taxi to busstop))))

Determinized Action:

(:action ACT 1 :parameters () :precondition (and (at_home) (uber_gift_card_1) (uber_gift_card_2)) :effect (and (at_garrage)) (car_running) (need_taxi_to_busstop))

Hypothesis: Would people choose landmark facts as summary

- Users were presented with a policy graph with state details and asked to summarize based on subgoals
- 60 participants in total with 30 per scenario
- We made sure the participants understood the domain through a filtering question
- Every participant was shown 13 options and five to six facts out of which were landmarks
- We filtered 41 participant with 164 selections out of which 125 were landmarks (76.2%)

No of reachable states	No of non- trivial policy landmarks	No of non- trivial model landmarks
$ \mathcal{R}^{\pi}(I) $	$ \Psi^{\pi} $	$ \Psi^{\mathcal{M}} $

Domain	$\mid \mathcal{R}^{\pi}(I) \mid$	$\mid \Psi^{\pi} \mid$	$\mid \Psi^{\mathcal{M}} \mid$
Ex-Blocksworld	104.8	8.8	5.2
Elevator	13.2	7	4
Tireworld	13.6	1.8	0.8
Tri-Tireworld	3973	6.25	0

Acknowledgement: This research is supported in part by ONR grants N00014-16-1-2892, N00014-18-1-2442, N00014-18-1-2840, N00014-9-1-2119, AFOSR grant FA9550-18-1-0067, DARPA SAIL-ON grant W911NF-19-2-0006, NSF grants 1936997 (C-ACCEL), 1844325 and 1909370, NASA grant NNX17AD06G, and a JP Morgan AI Faculty Research grant.