

Saarland University, Saarland Informatics Campus, Saarbrücken, Germany

Setting

Satisficing AI Planning (FDR without action costs)

Running Example:

After each expansion of a state *s*:

1 Initialize relaxed subgoal counting heuristic h^{rsc} with the relaxed plan for s

• Variables: *at*, *fuel*

- Actions:
- drive(x, y): *refuel*: • $pre = \{at = x, fuel = 1\}$ • $pre = \emptyset$ • $eff = \{at = y, fuel = 0\}$ • $eff = \{fuel = 1\}$
- Initial State: $\{at = A, fuel = 1\}$ • Goal: $\{at = C\}$
- Example plan: drive(A, B), refuel, drive(B, C)

Delete Relaxation

Variables accumulate their values instead of switching between them Example relaxed plan: drive(A, B), drive(B, C)

The h^{FF} heuristic yields the length of a (non-optimal) delete-relaxed plan [Hoffmann and Nebel 2001]

There are methods to extract more information from the relaxed plan: • Helpful actions/preferred operators [Hoffmann 2001, Helmert 2006]

- **2** Perform a bounded lookahead search with h^{rsc}
- ^{\odot} Return the best state s' according to h^{rsc}
- (4) Insert s' at the front of the open list if $h^{\mathsf{FF}}(s') < h^{\mathsf{FF}}(s)$, else discard it (with h^{CFF} : ...and refine the set of conjunctions C)

Lookahead search is bounded by using novelty: expand a state only if it contains a fact that was not seen before in this lookahead \rightarrow expand at most as many states as there are different facts.

Experiments

STRIPS domains from satisficing IPC tracks (1825 instances/49 domains), 30min timeout, 4GB memory limit

Comparison of GBFS without vs. RSL vs. YAHSP lookahead (all configurations with dual-queue for preferred operators):

Lookahead	none	RSL	YAHSP
h^{FF}	1494	1518	1529
$h^{\sf rb}$	1508	1513	1541

- \rightarrow Applicable actions: *drive*(A, B)
- Generate lookahead state using executable prefix [YAHSP; Vidal 2004, 2011] \rightarrow Executable prefix: *drive*(A, B)
- Relaxed subgoal counting [BFWS; Lipovetzky and Geffner 2017] \rightarrow Subgoals: at = B, at = C

Partial Delete Relaxation

Take some delete information into account:

- Red-Black Planning (Katz and Hoffmann 2014, Domshlak et al. 2015) \rightarrow un-relax *fuel* variable
- Explicit Conjunctions (Keyder et al. 2014, Fickert et al. 2016) \rightarrow achieve *fuel* = 1 and *at* = *B* at the same time Works best if the conjunctions are generated during search

h^{gray}	1555	1543	1579
$h_{\it offline}^{C {\sf F} {\sf F}}$	1498	1577	1603
$h_{\mathit{online}}^{CFF}$	_	1665	1573

Comparison with other state-of-the-art planners:

	GBFS-RSL	LAMA	$BFWS(f_5)$	Dual-BFWS	Mercury	MERWIN	Coverage
GBFS-RSL		20	20	16	15	13	1665
AMA	6	_	19	10	5	4	1574
$BFWS(f_5)$	8	15	_	5	11	9	1530
Dual-BFWS	9	18	22	—	12	10	1623
Mercury	9	14	19	13	—	2	1605
MERWIN	10	17	20	14	12	_	1634

GBFS-RSL on VisitAll

Lookahead State

Relaxed Plan

Lookahead Search Tree