Certified Unsolvability for SAT Planning with Property Directed Reachability

Salomé Eriksson Malte Helmert University of Basel

Certifying Algorithms

Algorithm emits certificate alongside its output, which is verified independently:

SAT solvers Planners satisfying assignment plan

DRAT proof unsolvability certificate

Desired Properties

- sound & complete
- efficient generation (polynomial in planner runtime)
- efficient verification (polynomial in certificate size)
- generality

solvable

unsolvable

Unsolvability Certificates for Planning [E et al. 2018]

The certificate incrementally builds a knowledge base of proven statements:

- ightharpoonup objects: state sets S_i (represented by propositional logic formulas φ_i)
- ► types of statements:
 - $\triangleright S_1 \subseteq S_2$
 - $ightharpoonup S_1$ dead (no state in S_1 can be part of a plan)
- ▶ basic statements:
 - state facts about concrete objects
 - ▶ need to be verified semantically
- ▶ derivation rules:
 - ► derive new knowledge from existing knowledge
 - ightharpoonup universally true \rightarrow only need to be verified syntactically

A Task is proven unsolvable if $\{I\}$ or G have been proven to be dead.

Basic Statements Examples

B1 $\bigcap S_1 \subseteq \bigcup S_2$ **B2** $(\bigcap S_1)[A] \subseteq \bigcup S_2$ $S[A] = \{s' \mid s \in S, s[a] = s' \text{ for some } a \in A\}$ **B3** $[A](\bigcap S_1) \subseteq \bigcup S_2$ $[A]S = \{s \mid s' \in S, s[a] = s' \text{ for some } a \in A\}$

Derivation Rules Examples

Rules for showing deadness:

SD S_1 dead, $S_2 \subseteq S_1$ $\rightarrow S_2$ deadPG $S_1[A] \subseteq S_1 \cup S_2$, S_2 dead, $S_1 \cap G$ dead $\rightarrow S_1$ deadRI $[A]S_1 \subseteq S_1 \cup S_2$, S_2 dead, $\{I\} \subseteq \overline{S_1}$ $\rightarrow S_1$ deadED $\rightarrow \emptyset$ dead

Rules from Set Theory:

 $\begin{array}{lll} \textbf{SI} & S_1\subseteq S_2,\, S_1\subseteq S_3 \\ \textbf{ST} & S_1\subseteq S_2,\, S_2\subseteq S_3 \\ \textbf{UR} & \rightarrow S_1\subseteq S_2\cap S_2 \\ & \rightarrow S_1\subseteq S_1\cup S_2 \end{array}$

Property Directed Reachability [Suda 2014]

Property Directed Reachability (PDR) reasons about layers L_i which

- ightharpoonup overapproximate states with distance < i to goal,
- ▶ are iteratively refined, and
- ▶ are represented as CNF formulas, or Dual-Horn formulas for STRIPS tasks.

for i = 0, ... do

while $l \in L_i$ do

if exists path of length i from l to G then

return found plan

else

strengthen layers where path cannot be extended

end

end

if $L_u = L_{u-1}$ for some u < i then

return unsolvableend

end

Certificate Structure

PDR's unsolvability argument:

- ightharpoonup we cannot (backwards) reach new states from L_u
- $ightharpoonup L_{ij}$ contains all goal states
- $ightharpoonup L_u$ does not contain the initial state

statement	justification	
$[A]L_u\subseteq L_u$	basic statement	
$\{I\}\subseteq \overline{L_u}$	basic statement	
L_u is dead	from (1) and (2) with rule RI	
$G\subseteq L_u$	basic statement	

Efficient Verification

G is dead

Basic statements need to be verified semantically. If this can be done efficiently depends on the state set representation:

from (3) and (4) with rule SD

$$S_1 \subseteq S_2 \Leftrightarrow \varphi_1 \models \varphi_2$$

- ► efficient for BDDs, explicit enumeration, (Dual-)Horn and 2CNF formulas
- ► not efficient for CNF formulas

Basic Statements for CNF

Planner calls SAT solver, which is a certifying algorithm.

→ Integrate UNSAT certificates into proof

	statement	required UNSAT certificate(s)
C1a	$S_1 \subseteq S_2$	$\varphi_1 \wedge \neg \gamma$ for each γ in φ_2
C ₁ b	$S_1\subseteq \overline{S_2}$	$\varphi_1 \wedge \varphi_2$
C2a	$S_1[A] \subseteq S_2$	$\varphi_1 \wedge T_A \wedge \neg \gamma'$ for each γ in φ_2
C2b	$S_1[A]\subseteq \overline{S_2}$	$\varphi_1 \wedge T_A \wedge \varphi_2'$
C3a	$[A]S_1\subseteq S_2$	$\varphi_1' \wedge T_A \wedge \overline{\gamma}$ for each γ in φ_2
C3b	$[A]S_1\subseteq \overline{S_2}$	$\varphi_1' \wedge T_A \wedge \varphi_2'$

- ▶ state sets S_i represented by CNF formulas $\varphi_i = \bigwedge \gamma_i$
- ransition formula T_A encodes pairs of states (s, s') with s[a] = s' for $a \in A$

Modified Certificate for PDR with SAT

The SAT calls performed by PDR don't match the required certificates. \rightarrow modify basic statements and use additional derivation rules:

#	statement	justification
(1a)	$[A]L_u \subseteq states(\gamma)$ for all γ in φ_{L_u}	SAT certificates provided by planne
(1b)	$[A]L_u\subseteq L_u$	from (1a) with rule SI
(2)	$\{I\}\subseteq \overline{L_u}$	build UNSAT certificate by hand*
(3)	L_u is dead	from (1b) and (2) with rule RI
(4a)	$G \subseteq states(\gamma)$ for all γ in φ_{L_u}	build UNSAT certificates by hand*
(4b)	$G\subseteq L_u$	from (4a) with rule SI
(5)	G is dead	from (3) and (4b) with rule SD

*formula can be proven unsolvable solely by unit propagation

Experimental Evaluation (PDR without SAT)

	base	certifying	verifier
PDR	388	384	382
FD-h ^{M&S}	224	197	178
FD-h ^{max}	203	156	140
DFS-CL	394	386	385

