On the Computational Complexity of Multi-Agent Pathfinding on Directed Graphs Bernhard Nebel

Albert-Ludwigs-Universität, Freiburg, Germany

Multi-Agent Pathfinding

- ► Given: A set of agents A, an undirected, simple graph G = (V, E), an initial state modelled by an injective function $\alpha_0 : A \to V$ and a goal state modelled by another injective function $\alpha_* : A \to V$.
- Question: Can \(\alpha_0\) be transformed into \(\alpha_*\) by movements of single agents without collisions?
- **Example**:

Known complexity results and open problems

- ► Deciding MAPF plan existence can be solved in $O(n^3)$ time and the plan length can be bounded by $O(n^3)$ movement actions [2].
- Finding a shortest plan is NP-complete [3].
- A number of variations of the problem (e.g. parallel movements) have been studied and optimization variants with parallel moves have been shown to be NP-complete [4, 5].
- Plan existence on strongly bi-connected directed graphs is polynomial [1].

Find a plan to move the square agent S to v₃ and the circle agent C to v₂!

8

Main result: A lower bound

Theorem *diMAPF solvability is NP-hard*.

Proof: Reduction from 3SAT. Example reduction for $(x_1 \lor x_2 \lor \neg x_3) \land$

Open problem since 1984: What is the computational complexity of MAPF on general directed graphs (diMAPF)?

Two upper bounds

Theorem *diMAPF on DAGs is in NP.*

Proof: In each plan, an agent can visit each node only once. Hence, a plan can have only $O(n^2)$ steps, i.e. one can guess and check a solution in polynomial time.

Theorem *diMAPF* on general directed graphs is in PSPACE. **Proof:** diMAPF can be easily reduced to propositional STRIPS, which is in PSPACE. ■

A conditional upper bound for the general case

Hypothesis The solution length for diMAPF on strongly connected digraphs is polynomial.

This hypothesis appears to be plausible. It is true for the special case of strongly bi-connected digraphs with at least two empty nodes.

Theorem *diMAPF is NP-complete, provided the short solution hypothesis is true.*

Proof: Each agent can only enter a strongly connected component once, and leave it once. So if there are short solutions for all strongly connected components, there will be one for the overall graph.

Identified problem that is open since more than 35 years (but did anybody notice that it was open?)

- Demonstrated that a Kornhauser-style algorithm for directed graphs is impossible.
- Results generalize to variations with parallel moves.
- Open problem: Is the short solution hypothesis true?

Summary

References

[1] A. Botea, D. Bonusi, and P. Surynek. Solving multi-agent path finding on strongly biconnected digraphs. Journal of Artificial Intelligence Research, 62:273–314, 2018.

- [2] D. Kornhauser, G. L. Miller, and P. G. Spirakis. Coordinating pebble motion on graphs, the diameter of permutation groups, and applications. In 25th Annual Symposium on Foundations of Computer Science (FOCS-84), pages 241–250, 1984.
- [3] D. Ratner and M. K. Warmuth. Finding a shortest solution for the N × N extension of the 15-puzzle is intractable. In *Proceedings of the 5th National Conference on Artificial Intelligence (AAAI-86)*, pages 168–172, 1986.
- [4] P. Surynek. An optimization variant of multi-robot path planning is intractable. In Proceedings of the Twenty-Fourth Conference on Artificial Intelligence (AAAI-10), 2010.
- [5] J. Yu and S. M. LaValle. Structure and intractability of optimal multi-robot path planning on graphs. In Proceedings of the Twenty-Seventh Conference on Artificial Intelligence (AAAI-13), 2013.