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Multi-Agent Pathfinding

I Given: A set of agentsA, an undirected, simple graphG = (V,E),
an initial state modelled by an injective function α0 : A→ V and a
goal state modelled by another injective function α∗ : A→ V .

I Question: Can α0 be transformed into α∗ by movements of single
agents without collisions?

I Example:
v1 v2 v3

v4

I Find a plan to move the square agent S to v3 and the circle agent
C to v2!

Known complexity results and open problems

I Deciding MAPF plan existence can be solved in O(n3) time and
the plan length can be bounded by O(n3) movement actions [2].

I Finding a shortest plan is NP-complete [3].

I A number of variations of the problem (e.g. parallel movements)
have been studied and optimization variants with parallel moves
have been shown to be NP-complete [4, 5].

I Plan existence on strongly bi-connected directed graphs is poly-
nomial [1].

I Open problem since 1984: What is the computational complexity
of MAPF on general directed graphs (diMAPF)?

Main result: A lower bound
Theorem diMAPF solvability is NP-hard.

Proof: Reduction from 3SAT. Example reduction for (x1∨x2∨¬x3)∧
(¬x1 ∨ x2 ∨ x3):
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Two upper bounds

Theorem diMAPF on DAGs is in NP.

Proof: In each plan, an agent can visit each node only once. Hence,
a plan can have only O(n2) steps, i.e. one can guess and check a
solution in polynomial time.

Theorem diMAPF on general directed graphs is in PSPACE.

Proof: diMAPF can be easily reduced to propositional STRIPS,
which is in PSPACE.

A conditional upper bound for the general case

Hypothesis The solution length for diMAPF on strongly connected di-
graphs is polynomial.

This hypothesis appears to be plausible. It is true for the special case
of strongly bi-connected digraphs with at least two empty nodes.

Theorem diMAPF is NP-complete, provided the short solution hy-
pothesis is true.

Proof: Each agent can only enter a strongly connected component
once, and leave it once. So if there are short solutions for all strongly
connected components, there will be one for the overall graph.

Summary

I Identified problem that is open since more than 35 years (but did
anybody notice that it was open?)

I Demonstrated that a Kornhauser-style algorithm for directed
graphs is impossible.

I Results generalize to variations with parallel moves.

I Open problem: Is the short solution hypothesis true?
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