
Hierarchical Graph Traversal for

Aggregate k Nearest Neighbors Search

in Road Networks

Tenindra Abeywickrama*, Muhammad Aamir Cheema^, Sabine Storandt#

*NUS-Grab AI Lab, Monash University^, University of Konstanz #

Still hungry? Please have more

Taste it here ...

Like it? Read the recipe Benefits

Real-World Example

We study Aggregate k Nearest Neighbour (AkNN) queries in graphs:

• Setting: Graph 𝐺 = (𝑉, 𝐸), Object Vertex Set 𝑂 ⊆ 𝑉

• Input: Agent Locations 𝑄 ⊆ 𝑉 , Aggregate Function 𝑓(𝑥)

• Definition: Find the nearest object 𝑜 ∈ 𝑂 by its aggregate
distance computed to all agents by 𝑓(𝑥)

Key Points:

• Uses network distance in graph (more diverse + accurate metrics)

• Answered efficiently by using heuristics to retrieve candidates

• But existing heuristics only suitable for single agent

• Propose a new data structure to answer AkNN

• Significantly faster in practice but still lightweight

𝑜1

𝑜2

𝑞1

𝑞2

𝑜3

𝑞3

𝑑(𝑞2, 𝑜2)

𝑑(𝑞1, 𝑜2)

𝑑(𝑞3, 𝑜2)

𝐴𝑔𝑔_𝑆𝑐𝑜𝑟𝑒(𝑜2) = 𝐴𝑔𝑔_𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑(𝑞1, 𝑜2 , 𝑑(𝑞2, 𝑜2), 𝑑(𝑞3, 𝑜2))

Sources: Google

Maps, McDonalds,

Flaticon.com

Three friends (𝑞1, 𝑞2, 𝑞3) want to meet at a McDonalds (𝑜1, 𝑜2, 𝑜3)
convenient for everyone. Which McDonalds’ should they meet at?

Issue this AkNN query: Which McDonalds minimises the SUM of
road network distance over all friends?

Single-agent heuristics rely on the intuition that the nearest objects
are in the vicinity of the single agent. This is not true for multi-agent
AkNN search, the “nearest” object by aggregate distance unlike to
be near one agent! Recursive hierarchical search is more intuitive

But existing data structures are not efficient for graphs. We
propose: Compacted Object-Landmark Tree (COLT), a hierarchical
subgraph tree of the road network customised for object set 𝑂

COLT: An object-graph index that supports efficient hierarchical
search perfectly suited for AkNN search

Key Benefits:

• Novel use of landmark lower-bounds (LLBs) for greater accuracy

• LLBs never previously used for hierarchical search until COLT!

• Landmarks are localized for each tree level => allows us to
pinpoint best candidates

• Displays interesting property that makes it particularly efficient
for AkNN search for convexity preserving aggregate functions

• Common functions such as SUM and MAX do preserve convexity

• Space/time complexity for pre-processing comes at modest cost
in both theory and practice: still lightweight

• It is a generic graph data structure that can potentially be applied
to other graphs and problems, e.g., shortest detour query

S0

S1 S2

S2A S2B

l1

l2

o1,1 o2,3

o2,1 o1,4

Accuracy of landmark lower-bounds
increases as we delve deeper into
the hierarchy (this is by design). At
each level, the landmarks are more
local to the objects it contains,
leading to more accurate lower-
bounds, allowing us to “pinpoint”
the best candidates efficiently

Top-Down Recursive Search Experimental Results

• Experiments were conducted on real-
world road network and POI datasets
for United States

• COLT up to an order of magnitude
faster than existing techniques!

• Performs better on dense POI sets
because it better distinguishes close
objects => i.e. a better heuristic

• COLT maintains improvement for
varying parameters such as: number
of results 𝑘, number of agents |𝑄|,
the aggregate function, and machine
independent heuristic efficiency

• Comes at small and/or comparable
pre-processing cost in time and space

S0

S1 S2

S2A S2B

l1

l2

o1,1 o2,3

o2,1 o1,4

We find AkNN candidates by
conducting a top-down search from
the root node in the tree. Each child
represents a subgraph of the parent.
COLT stores certain values in each
tree node that allow a lower-bound
aggregate score to be compute for
all objects within the subgraph using
the equation to the right. Children
with the best aggregate score are
evaluated recursively until the best
candidate object is found

