Integrating Acting, Planning, and Learning in Hierarchical Operational Models

Sunandita Patra\(^1\), James Mason\(^1\), Amit Kumar\(^1\), Malik Ghallab\(^2\), Paolo Traverso\(^3\), Dana Nau\(^1\)

\(^1\)University of Maryland, USA, \(^2\)LAAS-CNRS, France, \(^3\)FBK-ICT, Italy.

Planning
- Prediction + search
- To reach a goal or accomplish a task

Acting
- Performing tasks and actions in the real world
- Adapt to context, react to events
- Dynamic, partially observable environment
- Wrong move can lead to failures and dead ends
- Needs online help from planner

Actor

Planner

Descriptive Models
What the actions do?
- e.g., PDDL actions: action: action-identifier
 pre: test
 effects: effect, effect, ...
 effect

Operational Models
How to perform the task on actor's execution platform?
- method-name(arg\(_1\), ..., arg\(_n\))
 task: task-identifier
 pre: test
 body: computer program to generate commands and more tasks

Planning Stage

Acting Stage

Problem: The two models may not be consistent
- Can't verify or manage plans
- Acting suffers

Our Contributions:
- Planner UPOM that uses the actor's operational models for planning
- Learning strategies integrated with actor and planner

Planning Algorithm: RAE
RAE = Refinement Acting Engine
loop:
- for every new task
- Candidates ← (applicable method instances)
- choose m from Candidates
- create a refinement stack
- like a program execution stack
- initially with just task and m
- add the stack to Agenda for each task
- Progress(stack)

Use UPOM to make an informed choice

Planning Procedure: UPOM

Learning Strategies: Learn\(\pi\) and LearnH

Learn\(\pi\):
To choose a refinement method for a task

LearnH:
To estimate a heuristic for UPOM
- Gather training data from acting and planning traces of RAE and UPOM
- Train classifiers (multi-layered perceptrons)

Experimental Evaluation
Measured efficiency (reciprocal of cost) and success ratio in four simulated domains with different properties, such as, dead ends, concurrent tasks, dynamic events, sensing actions, agent collaboration, dynamic events.

Conclusions
- Using same model for both acting and planning is useful
- Key idea: Use operational models for planning instead of descriptive models
- Avoids inconsistency between actor and planner
- RAE with UPOM / Learn\(\pi\) / LearnH shows improved performance compared to purely reactive RAE in four simulated domains

Contact:
Sunandita Patra
patras@umd.edu
University of Maryland, College Park
https://sunanditapatra.wixsite.com/camp