Learning Domain-Independent Heuristics over Hypergraphs

Add(a)

EFF₁

EFF₂

EFF₃

ÉFF4

William Shen¹, Felipe Trevizan², Sylvie Thiébaux² ¹ william.w.y.shen@gmail.com ² first.lastname@anu.edu.au

Motivation and Overview

Existing approaches to learning heuristics:

- Use features derived from existing heuristics
- Learn domain-dependent heuristics
- Difficult to generalise across problems of different sizes

Our approach **STRIPS-HGN**:

- Learns heuristics completely from scratch
- Generalises across problems of different sizes
- Capable of learning domain-independent heuristics which

This poster was also presented at GenPlan20 at AAAI

STRIPS-HGN (cont.)

generalise to domains they were not trained on

STRIPS-HGN approximates the shortest path over the *hypergraph* induced by the *delete-relaxation*.

Delete-Relaxation Hypergraph

Pre(a)

 (PRE_1)

PRE₂

 (PRE_3)

Action a

A hypergraph is a generalisation of a normal graph in which a hyperedge may connect any number of vertices together.

We consider the hypergraph induced by the delete-relaxed problem P⁺

- **Delete-Relaxation**: Ignore negative effects of all actions
- Propositions are vertices
- Actions are hyperedges
 - Connect preconditions with positive effects

Used implicitly by $h^{\text{max}} \& h^{\text{add}}$

STRIPS-HGN

STRIPS-HGN uses a recurrent encode-process-decode architecture.

Edge block Node block Global block

Training and Experiments

- **Training**: train on optimal heuristic values obtained from the optimal solution of the original problem (i.e., h^*) • Train on small problems, evaluate on larger problems
- **Baselines**: *h*^{add}, *h*^{max}, Landmark-cut and the blind heuristic
 - \circ Have access to the same information (i.e., hypergraph)
- **Setting**: A* search with 5 minute timeout

Domain-Dependent Heuristics

8-puzzle: 10 training problems, 50 testing problems

Multi-domain Heuristics

Train a single network on Blocksworld (10 problems with 4 to 5 blocks) + Zenotravel (10 small problems) + Gripper (3 problems with 1 to 3 balls)

Evaluate on **Blocksworld**: 100 test problems with 6 to 10 blocks

Evaluate on **Gripper**: 17 test problems with 4 to 20 balls

In each core processing step, we perform message passing:

- Update the latent features for each vertex/hyperedge
- Compute a global latent feature for the heuristic value
- Increased repetitions lead to deeper information propagation

(a) Edge update

(b) Node update

(c) Global update [Battaglia et al., 2018]

Domain-Independent Heuristics

Train a single network on Zenotravel (10 small problems) + Gripper (3 problems with 1 to 3 balls)

Evaluate on unseen **Blocksworld**: 50 test problems with 4 to 8 blocks

