
Faculty of Engineering Sciences

Department of Software and Information Systems Engineering

Yossi Cohen
Advisors: Prof. Ariel Felner, Dr. Roni Stern

Solving the longest simple path problem with heuristic search

The Problem
Finding the longest path in a graph from start to goal

without visiting the same vertex more than once.

An NP-Hard Problem with applications in VLSI design,

error correction code, and robot patrolling.

S # #

#

#

#

#

#

#

#

#

T

↓ → → ↓ # # → → → ↓

↓ ↑ # → → ↓ ↑ ↓ ←

↓ ↑ ← ← # → ↑ # → ↓

→ → → ↑ # # ↓ ← ↓

↓ ← # ↓ ↑ ←

↓ ← ← ← ↑ ← ↓ ← #

↓ # # # ↑ ← # #

→ → ↓ → → ↓ → ↓ #

↓ ↑ ← → ↑ ↓ → ↓

→ → ↑ # → ↑ T

HOW?

Pruning

Basic Symmetry Detection

same ‘head’ location & same ‘visited’ coverage

Previously expanded: Newly generated:

Hashing the visited area can help compare nodes efficiently.

S S

TT

HH

Reachable Dominance Property

same ‘head’ location & same ‘reachable’ coverage (or sub set of

the reachable)

Previously expanded: Newly generated:

Can prune retrospectively – replace an inferior node

with dominated node

S

T

S

t

H H

Heuristics

Reachable*

Count the remaining unvisited

that we can reach.

S

TH

Biconnected components*

Count the remaining unvisited that are

on the blocks that appear between the

head and target on the BCT.

S

TT

S

Alternate Steps

Improve heuristics on Bipartite graphs.

Such as Grid and SIB.

Improve Reachable and BCC* - Known heuristics for this domain

Separate Alternate Steps

Calculate the alternate steps on every BCC

block separately.

Improve BCC even more

Results
We used A* and DFBnB search algorithms and the above heuristics and pruning methods

Conclusions

• BCC Preprocessing always improve the

runtime.

• Pruning scientifically improve the search

time and nodes expanded

• Pruning effectiveness order:

None ≤ BSD ≤ RDP

• Heuristics effectiveness order:

R ≤ R+ALT ≤ BCC ≤ BCC+ALT ≤ BCC+Sep. ALT

• BSD has the fastest runtime and RDP has

the strongest pruning ability -

improvement of RDP runtime is the next

thing for this domain.

https://github.com/YossiCohen/Heuristic-Search-Max

Random Grids

Grid maps with random blocked cells - 360 maps with variety of

blocked percentile

Expanded nodes

Runtime (ms)

Room Maps

Grid maps with rooms - 400 maps with variety of number of rooms,

room size and blocked percentile

A* DFBnB

Average Expanded Nodes

Runtime (ms) – only for BCC based

Requirements

• A* and other optimal algorithms

require an admissible heuristic

• In LSP, an admissible heuristic

must upper bound the length of

the longest path to the goal

• We cant just say h=∞, smaller

values means better heuristics!

Sample room map
with 3x3 rooms and

4x4 per room

Sample 7x8 grid

t

s

t

s

How to prune paths during the search

and still guarantee to find the longest

simple path?

Any time a search node is expand

check that a better/equivalent node

isn’t already exists and maintain the

open-list accordingly by removing

inferior/equally good search nodes.

The down side is that new node

should be compared to all existing

nodes.

The Longest Simple Path
• Consider the next two nodes, they reached

the same place in the grid but they not share

the same valid operators (cardinal

directions)

[E,S,W] [N,E,S]

• In order to keep the path simple we must

keep the entire path from the start to the

head in every search node – without the full

path we can’t know what operators are valid.

• that means we will expand for every vertex

in the problem graph all the possible paths

to it in the search graph - that’s A LOT!

s

s

s

s

s

s

s

s

s

s

…

…

…

…

…

…

……

…

…

S

T

T

S

H

H

What

to do?

Our approach

• prune dominating paths while maintaining optimality

• propose effective admissible heuristics.

https://github.com/YossiCohen/Heuristic-Search-Max

