

P. Laborie - IBM - laborie@fr.ibm.com

IBM ILOG CP OPTIMIZER FOR SCHEDULING
M

O
D

EL
R

U
N

Sequencing Cumul functions State functions

Interval variables Structural constraints

task

dec

Automatic search Under the hood

Performance APIs and Tools References
1. Reasoning with Conditional Time-Intervals. FLAIRS-2008.

2. Reasoning with Conditional Time-Intervals, Part II: an
 Algebraical Model for Resources. FLAIRS-2009.

3. IBM ILOG CP Optimizer for Detailed Scheduling Illustrate on
 Three Problems. CPAIOR-2009.

4. Self-Adapting Large Neighborhood Search: Application to
 Single-Mode Scheduling Problems. MISTA-2007.

5. Failure-Directed Search for Constraint-Based Scheduling.
 CPAIOR-2015.

6. Timetable Edge Finding Filtering Algorithm for Discrete
 Cumulative Resources. CPAIOR-2011.

7. Temporal Linear Relaxation in IBM ILOG CP Optimizer.
 Journal of Scheduling 19(4), 391-400, 2016.

8. Objective Landscapes for Constraint Programming.
 CPAIOR-2018.

9. An Optimal Iterative Algorithm for Extracting MUCs in a
 Black-box Constraint Network. ECAI-2014.

10. IBM ILOG CP Optimizer for Scheduling.
 Constraints Journal 23(2), 210–250, 2018.

● Performance is on a par or outperforms state-of-the-art
problem specific algorithms for most of classical scheduling
problems like different variants / extensions of job-shop
and RCPSP problems [3,4,5]

● Recent improvements on large problems (1.000.000 tasks)
● Performance is continuously improved

Large-Neighborhood Search (LNS) [4]
● Based on a Partial Order Schedule (POS) computed from

feasible solutions
● A POS is a precedence graph such that the resource

constraints (on sequence, cumul and state functions) are
necessarily satisfied

● At each iteration, a fragment of the POS is relaxed and re-
optimized

● The completion strategy is guided by a linear relaxation of
the problem [7] and by exploiting objective landscapes [8]

● What for? Modeling an interval of time during which a particular property holds (an
activity executes, a resource is idle, a tank must remain empty, etc.)

● If desired, intervals can be optional: that is, whether the interval will be present or absent
in a solution is part of the optimization problem [1,2]

● Example: dvar interval x optional in 0..1000000 size 100..200;

● Logical constraints on interval presence: presenceOf(x) => presenceOf(x)
● Precedence constraints: endBeforeStart(x,y, delay)
● Step functions for modeling resource time-dependent intensity and breaks
● Integer expressions to get interval attributes: startOf(x,ValIfAbsent)

0 1000000

Time

[100,200]

x

● What for? Structure the problem in the form of an AND/OR graph
● OR nodes = alternative constraint alternative(x, [y1,…,yn])
● AND nodes = span constraint span(x, [y1,…,yn])
● Example of a work-breakdown structure:

● What for? Modeling constraints that enforce a total
temporal ordering of a set of interval variables

● A sequence variable represents a permutation of
interval variables: dvar sequence

● Example: Classical Job-Shop Scheduling Problem

● Additional features available for modeling sequence-
dependent setup times and constraints on transitions
(for instance for VRP-like problems)

● What for? The value of a cumul function expression
represents the time evolution of a quantity (e.g. level of
an inventory) that can be incrementally changed
(increased or decreased) by interval variables

● Examples: number of workers of a given type, level of an
inventory, etc.

● Example: Classical RCPSP

● Levels can be fixed or variable
● Constraints are available for limiting the value of a

cumul function over some fixed time periods or variable
intervals

● What for? The value of a state function represents the
time evolution of a value that can be changed/required
by interval variables
● Two interval requiring different states cannot overlap
● Two interval requiring the same state can (optionally)

be batched together (same start and end value)
● Example of a photo-lithography machine:

● APIs

● Tools
● Human readable I/O format
● Conflict refiner [9]: tells you why a model has no

solution
● Parametrizable search log for understanding the

behavior of the search

CP Optimizer
model

C++

OPL

Python

Java

C# On cloud

Local

Solve

...

● Properties of the automated search
● Complete
● Anytime (usually a first feasible solution is found quickly)
● Parallel (unless stated otherwise)
● Randomized (internally some ties are broken using

random numbers)
● Deterministic (solving the same problem twice produces

the same result)
● The search can be parametrized

● Search parameters (time limit, number of workers, control
of inference levels, random generator seed, ...)

● Starting point (injecting a solution)
● Search phases (partition of the decision variables)

● You can write your own constraints or search in C++, but
this is seldom needed in an industrial context

Two iterative methods are interleaved: LNS for producing good quality solutions and FDS for proving infeasibility

Failure-Directed Search (FDS) [5]
● Uses strong propagation [1,2,6]
● Decisions are rated and the ones that often lead to

infeasibility or strong domain reduction in the search are
preferred: they are used earlier in the search during the
next iterations

● FDS uses no-goods to avoid revisiting already explored
parts of the search space

FDS
Search Tree

Res
tart

No-goods

Decisions ratingt

cap

A
B

C
D F

E

H
G

F
B

A

C

G

D

E

H

Objective
landscapes

Failure-directed
search

Iterative
diving

	Slide 1

