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● Performance is on a par or outperforms state-of-the-art 
problem specific algorithms for most of classical scheduling 
problems like different variants / extensions of job-shop 
and RCPSP problems [3,4,5]

● Recent improvements on large problems (1.000.000 tasks)
● Performance is continuously improved

Large-Neighborhood Search (LNS) [4] 
● Based on a Partial Order Schedule (POS) computed from 

feasible solutions
● A POS is a precedence graph such that the resource 

constraints (on sequence, cumul and state functions) are 
necessarily satisfied

● At each iteration, a fragment of the POS is relaxed and re-
optimized

● The completion strategy is guided by a linear relaxation of 
the problem [7] and by exploiting objective landscapes [8]

● What for? Modeling an interval of time during which a particular property holds (an 
activity executes, a resource is idle, a tank must remain empty, etc.) 

● If desired, intervals can be optional: that is, whether the interval will be present or absent 
in a solution is part of the optimization problem [1,2]

● Example:  dvar interval x optional in 0..1000000 size 100..200;

● Logical constraints on interval presence:    presenceOf(x) => presenceOf(x) 
● Precedence constraints:                                  endBeforeStart(x,y, delay)
● Step functions for modeling resource time-dependent intensity and breaks
● Integer expressions to get interval attributes: startOf(x,ValIfAbsent)
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● What for? Structure the problem in the form of an AND/OR graph
● OR nodes = alternative constraint  alternative(x, [y1,…,yn]) 
● AND nodes = span constraint  span(x, [y1,…,yn]) 
● Example of a work-breakdown structure: 

● What for? Modeling constraints that enforce a total 
temporal ordering of a set of interval variables

● A sequence variable represents a permutation of 
interval variables:  dvar sequence

● Example: Classical Job-Shop Scheduling Problem

● Additional features available for modeling sequence-
dependent setup times and constraints on transitions 
(for instance for VRP-like problems)  

● What for? The value of a cumul function expression 
represents the time evolution of a quantity (e.g. level of 
an inventory) that can be incrementally changed 
(increased or decreased) by interval variables

● Examples: number of workers of a given type, level of an 
inventory, etc.

● Example: Classical RCPSP

● Levels can be fixed or variable
● Constraints are available for limiting the value of a 

cumul function over some fixed time periods or variable 
intervals

● What for? The value of a state function represents the 
time evolution of a value that can be changed/required 
by interval variables
● Two interval requiring different states cannot overlap
● Two interval requiring the same state can (optionally) 

be batched together (same start and end value)
●  Example of a photo-lithography machine:

● APIs 

● Tools 
● Human readable I/O format 
● Conflict refiner [9]: tells you why a model has no 

solution
● Parametrizable search log for understanding the 

behavior of the search 
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● Properties of the automated search
● Complete
● Anytime (usually a first feasible solution is found quickly)
● Parallel (unless stated otherwise)
● Randomized  (internally some ties are broken using 

random numbers) 
● Deterministic (solving the same problem twice produces 

the same result)
● The search can be parametrized

● Search parameters (time limit, number of workers, control 
of inference levels, random generator seed, ...)

● Starting point (injecting a solution)
● Search phases (partition of the decision variables)

● You can write your own constraints or search in C++, but 
this is seldom needed in an industrial context

Two iterative methods are interleaved: LNS for producing good quality solutions and FDS for proving infeasibility 

Failure-Directed Search  (FDS) [5] 
● Uses strong propagation [1,2,6]
● Decisions are rated and the ones that often lead to 

infeasibility or strong domain reduction in the search are 
preferred: they are used earlier in the search during the 
next iterations

● FDS uses no-goods to avoid revisiting already explored 
parts of the search space 
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