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Interval variables

* What for? Modeling an interval of time during which a particular property holds (an

Structural constraints

* What for? Structure the problem

in the form of an AND/OR graph

activity executes, a resource is idle, a tank must remain empty, etc.) * ORnodes = alternative constraint  alternative(x, [y1,..,yn])
. ¥f desu”ed., 1nt.ervals can be op.tlo.nalz. that is, whether the interval will be present or absent * AND nodes = span constraint span(x, [y1,.,yn])
in a solution is part of the optimization problem [1,2]
* Example of a work-breakdown structure:
* Example: dvar interval x optional in 0..1000000 size 100..200;
1 using CP;
0 [100/200] 1000000 2 tuple Dec { int task; {int} subtasks; }; task
- . 3 intn = ...;
4 int compulsory[l..n] = ...;
---------- X mEEEEESE 5 {Dec} Decs = ...;
Time 6 int nbDecs[i in 1..n] = card( {d | 4 in Decs : d.task==i} ); ciec:
> 7 1int nbParents[i in 1..n] = card( {d | 4 in Decs : i in d.subtasks} ); .
8 |
9 dvar interval task[i in 1..n] optional; r— o
10 dvar interval dec[d in Decs] optional; = F::i\\\\\
11
* Logical constraints on interval presence: presenceOf(x) => presenceOf(x) 15 CO;lstrfliI(l_tS_{ D
ora 1 1n 1..n W - P .
* Precedence constraints: endBeforeStart(x,y, delay) el iy e - T
. . . . . 16 if (mbDecs[i]1>0) {
* Step functions for modeling resource time-dependent intensity and breaks 17 alternative(task[il, all(d in Decs: d.task==i) dec[d]);
] . . 18 forall(d in Decs: d.task==i)
* Integer expressions to get interval attributes: startOf(x,ValIfAbsent) 19 , cpantdecldl, all(j in d.subtasks) task[j];
21}
22 forall(d in Decs, j in d.subtasks: O<compulsoryl[jl)
23 presence0f (dec[d]) => presenceOf (task[j]);
24 }

Sequencing
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* What for? Modeling constraints that enforce a total
temporal ordering of a set of interval variables

* A sequence variable represents a permutation of
interval variables: dvar sequence

* Example: Classical Job-Shop Scheduling Problem

dvar interval op[j in Jobs] [p in Pos] size Ops[jl[p].pt;
dvar sequence mchs[m in Mchs] in
all(j in Jobs, p in Pos: Ops[j][p]l.mch == m) op[j][p];

minimize max(j in Jobs) endOf (op[j] [nbPos]);
subject to {
forall(m in Mchs)
noOverlap(mchs[m]);
forall(j in Jobs, p in 2..nbPos)
endBeforeStart (op[j] [p-1],0p[j] [p]);
'y
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* Additional features available for modeling sequence-
dependent setup times and constraints on transitions
(for instance for VRP-like problems)

Automatic search

* Properties of the automated search
* Complete
* Anytime (usually a first feasible solution is found quickly)
* Parallel (unless stated otherwise)

* Randomized (internally some ties are broken using
random numbers)

* Deterministic (solving the same problem twice produces
the same result)

* The search can be parametrized

* Search parameters (time limit, number of workers, control
of inference levels, random generator seed, ...)

* Starting point (injecting a solution)
* Search phases (partition of the decision variables)

* You can write your own constraints or search in C++, but
this is seldom needed in an industrial context

Performance

* Performance is on a par or outperforms state-of-the-art
problem specific algorithms for most of classical scheduling

problems like different variants / extensions of job-shop
and RCPSP problems [3,4,5]

* Recent improvements on large problems (1.000.000 tasks)

* Performance is continuously improved

CP Optimizer average speedup for scheduling problems
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Cumul functions

* What for? The value of a cumul function expression
represents the time evolution of a quantity (e.g. level of
an inventory) that can be incrementally changed
(increased or decreased) by interval variables

* Examples: number of workers of a given type, level of an
inventory, efc.

* Example: Classical RCPSP

dvar interval a[i in Tasks] size i.pt;
cumulFunction usagel[r in Resources] =
sum(i in Tasks: i.qty[r]>0) pulse(alil,i.qtylr]l);
minimize max(i in Tasks) endOf(a[i]);
subject to {
forall(r in Resources)
usagel[r] <= Capacitylr];
forall(i in Tasks, j in i.succs)
endBeforeStart(ali], al<j>]);
7
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* Levels can be fixed or variable

* Constraints are available for limiting the value of a
cumul function over some fixed time periods or variable
intervals

Under the hood

State functions

* What for? The value of a state function represents the
time evolution of a value that can be changed /required
by interval variables

* Two interval requiring different states cannot overlap

* Two interval requiring the same state can (optionally)
be batched together (same start and end value)

* Example of a photo-lithography machine:

using CP;

int n=...;

int capacity = ...;

int pt[l..n] = ...;

int nbwafers[1..n] = ...;

int family[1..n] = ...;

tuple triplet { int idl; int id2; int value; };

{triplet} M = ...; // Transition time between pairs of families
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10 dvar interval opl[i in 1..n] size pt[il;
11 stateFunction batch with M;
12 cumulFunction load = sum (i in 1..n) pulse(op[i], nbwafers[il);

14 constraints {

15 load <= capacity;

16 forall(i in 1..n) {

17 alwaysEqual(batch, op[i], family[i], true, true);
18 }

19 }

Two iterative methods are interleaved: LNS for producing good quality solutions and FDS for proving infeasibility

Large-Neighborhood Search (LNS) [4]

* Based on a Partial Order Schedule (POS) computed from
feasible solutions

* A POS is a precedence graph such that the resource
constraints (on sequence, cumul and state functions) are
necessarily satisfied
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* At each iteration, a fragment of the POS is relaxed and re-
optimized

* The completion strategy is guided by a linear relaxation of
the problem [7] and by exploiting objective landscapes [8]

APIs and Tools

* APIs

C++

OPL

CP Optimizer
Python i
Java
CH#

* Tools

* Human readable I/ O format

* Conlflict refiner [9]: tells you why a model has no
solution

* Parametrizable search log for understanding the
behavior of the search

Failure-Directed Search (FDS) [5]

* Uses strong propagation [1,2,6]

* Decisions are rated and the ones that often lead to
infeasibility or strong domain reduction in the search are
preferred: they are used earlier in the search during the
next iterations

* FDS uses no-goods to avoid revisiting already explored
parts of the search space

FDS
Search Tree /

No-goods

Decisions rating
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