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What is Crowd 
Navigation?

• Unstructured: no flow rules or static obstacles
• Collect time stamped x,y data (trajectories) 
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Fig. 2. (a,b) Empirical evidence of joint collision avoidance: blue circles (representing current position) over gray lines are pedestrians moving down,
and black circles are the area of interest. In (a), the blue pedestrians have not yet seen the green person; their projected trajectories (in gray) are very narrow.
In (b), green dots with red encircling are current position of the pedestrian moving up, and all of the pedestrians have adjusted their trajectories to create
space—notice how wide the gray prediction has become. It is this joint collision avoidance behavior which we capture in this paper. (c-e) Illustration

of FRP. Dynamic crowd agents in red traveling downward, robot we are trying to control in blue. The multiple dots indicate multiple points along one
trajectory. (c) Uncertainty explosion due to uncorrected prediction. (d) Even with perfect prediction, room for robot navigation may not exist. (e) Modeling
cooperative collision avoidance remedies the FRP.

B. Approaches for solving the FRP

In order to fix the FRP, one state of the art approach
[6], called partially closed loop receding horizon control
(PCLRHC), anticipates the observations (effectively hallu-
cinating that a certain measurement sequence of the entire
trajectory sequence has already taken place at time t < T );
ultimately, the approach is motivated by the assumption that
the culprit of the FRP is an uncertainty explosion, illustrated
in Figure 2(c). The claim is that if you can control the
covariance, then you can keep the value of J(f (R)|z1:t) low
for some (short path length) trajectories f (R), and thus solve
the FRP (other approaches, which incorporate more accurate
agent modeling, are similar in motivation to PCLRHC, since
better dynamic models would reduce predictive covariance as
well).

However, in severely crowded environments, even the
optimal solution to the MDP suffers from freezing robot
behavior. This is because we can lower bound the optimal
MDP cost by

Ez1:T [min
f (R)

J(f (R)|z1:T )], (II.4)

which is the expected cost in the case of perfect prediction
(i.e., knowing the future). Unfortunately, in dense environ-
ments, such as those shown in Figures 2(d) and 2(a), this
lower bound can still be prohibitively expensive, and lead
even optimal planners (such as the MDP) to exhibit freezing
robot actions. It follows that suboptimal methods, which
work at improving the prediction or reducing the covariance,
cannot be expected to solve the FRP.

This analysis suggests that the planning problem as in-
troduced above is ill-posed. We thus revisit our probability

density,

p(f (1), . . . , f (n) | z1:t), (II.5)

and remark that a crucial element is missing—the agent mo-
tion model is agnostic of the navigating robot. One solution
is thus immediately apparent: include an interaction between
the robots and the agents (in particular, a joint collision
avoidance) in order to lower the MDP cost in equation II.4.
We additionally remark that the illustration in Figure 2(b), the
crowd experiments catalogued in the research of [8], [9], [7],
the multi-robot coordination theorems of [26], [25], and the
tracking experiments of [18], [19], [16], all corroborate the
argument that autonomous dynamic agents utilize joint col-
lision avoidance behaviors for successful crowd navigation.
We thus consider methods to incorporate such an interaction.

A naive approach to modeling interaction would be to
model a conditional density p(f | z1:t, f (R)), that encodes
assumptions on how the agents react to the robot’s actions,
i.e., the idea that all agents will “give way” to the robot’s
trajectory. The problem with this approach is that it implicitly
assumes that the robot has the ability to control the crowd.
Thus, this approach would not only create an obnoxious
robot, but an overaggressive and potentially dangerous one
as well. This method is unsuitable for crowded situations.

The other alternative, which we advocate in this paper,
is to consider a robot action as an agent action (i.e., the
robot is modeled as one of the agents) and to model a joint
distribution describing their interaction:

p(f (R), f |, z1:t). (II.6)

This distribution encodes the idea of cooperative planning,
and joint collision avoidance. Planning then corresponds to

True Pedestrian Movement: 
Humans leverage cooperation
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Fig. 2. (a,b) Empirical evidence of joint collision avoidance: blue circles (representing current position) over gray lines are pedestrians moving down,
and black circles are the area of interest. In (a), the blue pedestrians have not yet seen the green person; their projected trajectories (in gray) are very narrow.
In (b), green dots with red encircling are current position of the pedestrian moving up, and all of the pedestrians have adjusted their trajectories to create
space—notice how wide the gray prediction has become. It is this joint collision avoidance behavior which we capture in this paper. (c-e) Illustration

of FRP. Dynamic crowd agents in red traveling downward, robot we are trying to control in blue. The multiple dots indicate multiple points along one
trajectory. (c) Uncertainty explosion due to uncorrected prediction. (d) Even with perfect prediction, room for robot navigation may not exist. (e) Modeling
cooperative collision avoidance remedies the FRP.

B. Approaches for solving the FRP

In order to fix the FRP, one state of the art approach
[6], called partially closed loop receding horizon control
(PCLRHC), anticipates the observations (effectively hallu-
cinating that a certain measurement sequence of the entire
trajectory sequence has already taken place at time t < T );
ultimately, the approach is motivated by the assumption that
the culprit of the FRP is an uncertainty explosion, illustrated
in Figure 2(c). The claim is that if you can control the
covariance, then you can keep the value of J(f (R)|z1:t) low
for some (short path length) trajectories f (R), and thus solve
the FRP (other approaches, which incorporate more accurate
agent modeling, are similar in motivation to PCLRHC, since
better dynamic models would reduce predictive covariance as
well).

However, in severely crowded environments, even the
optimal solution to the MDP suffers from freezing robot
behavior. This is because we can lower bound the optimal
MDP cost by

Ez1:T [min
f (R)

J(f (R)|z1:T )], (II.4)

which is the expected cost in the case of perfect prediction
(i.e., knowing the future). Unfortunately, in dense environ-
ments, such as those shown in Figures 2(d) and 2(a), this
lower bound can still be prohibitively expensive, and lead
even optimal planners (such as the MDP) to exhibit freezing
robot actions. It follows that suboptimal methods, which
work at improving the prediction or reducing the covariance,
cannot be expected to solve the FRP.

This analysis suggests that the planning problem as in-
troduced above is ill-posed. We thus revisit our probability

density,

p(f (1), . . . , f (n) | z1:t), (II.5)

and remark that a crucial element is missing—the agent mo-
tion model is agnostic of the navigating robot. One solution
is thus immediately apparent: include an interaction between
the robots and the agents (in particular, a joint collision
avoidance) in order to lower the MDP cost in equation II.4.
We additionally remark that the illustration in Figure 2(b), the
crowd experiments catalogued in the research of [8], [9], [7],
the multi-robot coordination theorems of [26], [25], and the
tracking experiments of [18], [19], [16], all corroborate the
argument that autonomous dynamic agents utilize joint col-
lision avoidance behaviors for successful crowd navigation.
We thus consider methods to incorporate such an interaction.

A naive approach to modeling interaction would be to
model a conditional density p(f | z1:t, f (R)), that encodes
assumptions on how the agents react to the robot’s actions,
i.e., the idea that all agents will “give way” to the robot’s
trajectory. The problem with this approach is that it implicitly
assumes that the robot has the ability to control the crowd.
Thus, this approach would not only create an obnoxious
robot, but an overaggressive and potentially dangerous one
as well. This method is unsuitable for crowded situations.

The other alternative, which we advocate in this paper,
is to consider a robot action as an agent action (i.e., the
robot is modeled as one of the agents) and to model a joint
distribution describing their interaction:

p(f (R), f |, z1:t). (II.6)

This distribution encodes the idea of cooperative planning,
and joint collision avoidance. Planning then corresponds to

Even with perfect future
knowledge, “decoupling” 
prediction and navigation fails

Decoupling leads to Freezing Robot Problem
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To address this shortcoming, we are constructing a large scale,
longitudinal study of robot navigation in unscripted human
environments. We intend to test foIGP and soIGP in multiple
public spaces over a multi-year period.

Given the stated shortcomings of static testing, perhaps a
good way to interpret simulation studies is as one of invali-
dation: we cannot validate that a crowd navigation algorithm
will work in the real world, but we can show that an algorithm
most likely will not work. For instance, DWA does not have
the machinery for real world environments: in this study (and
others), DWA exhibits freezing robot behavior and too high of
a collision rate to risk deployment. Similarly, CADRL showed
freezing robot behavior, making it unsuitable for deployment
(although the authors demonstrated the algorithm in a crowded
university hallway, no results or operational parameters were
reported). SARL did not show freezing robot tendencies,
although the collision rate in this study was too high to merit
deployment (again, the SARL authors demonstrated the robot
in a small crowd, but no performance metrics or operational
parameters were reported). Given that SARL’s performance
was borderline, perhaps a different reward function or training
regimen would improve the safety to an acceptable tolerance.

While a real world study is the most pressing next step, theo-
retical issues remain. For instance, the Gaussian assumption is
misaligned with human passing preferences; humans typically
prefer passage on either one side or the other. However, our
model of flexibility as covariance matrix assumes that left
and right passing preference is identical. Further, our flexi-
bility model is impoverished; better methods of understanding
human “willingness to compromise” can surely be devised.
Finally, while we tested on full trajectories, our algorithms
were provided the global plan. Rigorously incorporating our
current short horizon methods into a long horizon planner
is nontrivial. Further, understanding how to plan over long
distances given the native complexity of crowds is a substantial
undertaking.
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Fig. 5. (a) Unsafe runs for the noncooperative planner (called mgGP, in magenta) and mgIGP (in blue). Overall, the noncooperative planner fails more
than 3 times as often as the cooperative planner. At extremely high densities (above 0.8 people/m2, when patrons are standing nearly shoulder to shoulder)
all planners consistently fail. Anecdotally, it is extremely hard to teleoperate a robot at these densities. (b) Unsafe runs for the noncooperative planner and
IGP (in black). Even without goal based prediction, the cooperative planner is more than twice as safe as the noncooperative planner.

tracks detailed in the appendix to [30]; those velocity profiles
with an unsafe probability of collision are discarded (we
tuned this threshold to be maximally aggressive yet always
safe). The safest profile with the highest velocity is chosen.
This approach is similar to [29], and is always safe.

The motion profile of this planner was purposefully chosen
to be as straightforward as possible (only forward motion)
in order to study what could be achieved with the simplest
of implementations. Importantly, the planner of V-B.1 is a
generalization of this planner—i.e., all motions are allowed.

5) Human Teleoperation: Human teleoperation was con-
ducted at the discretion of the teleoperator: we allowed the
operator to maintain as much line of sight as desired. In
all, six teleoperators controlled the robot, for a total of 85
runs. The data produced served as an “upper bound” of
dense crowd navigation performance: at all densities, the
performance of the human teleoperator exceeded that of the
autonomous navigation algorithm.

C. Description of Untested Navigation Algorithms

We survey existing navigation approaches and explain why
our test algorithms are sufficiently representative. Inevitable
collision states (ICS) are limited to deterministic settings, and
so are inapplicable. Probabilistic ICS ([35]) is designed to
handle predictive uncertainty. However, Probabilistic ICS is a
special case of [14], and so V-B.1 (our noncooperative plan-
ner) is representative. Velocity obstacles (VOs) are limited
to deterministic scenarios, and thus inappropriate. In [36],
VOs are generalized for noise. However, Probabilistic VOs
use linear extrapolation, and so V-B.1 is representative. We
tested reciprocal velocity obstacles (RVOs, [37]). However,
noisy pedestrian tracks caused RVO to behave erratically
(unresponsive to a single person walking directly at the
robot), and RVO assumes all agents choose velocities in
a pre-specified manner, which is untrue for humans. Fur-
thermore, we adjusted the value of the collision cone to

be less aggressive; nevertheless, RVO still struggled with
natural human environments. Although other modifications
may indeed make this algorithm successful, for the purposes
of this experiment, RVO was deemed unsuitable. Potential
fields are combined with RRTs to find the minimal cost
robot trajectory in [17]. The primary difference between this
algorithm and V-B.1 is that our cost field is spherical (rather
than ellipsoidal), so V-B.1 is representative.

We point out that the work of [25] and [23] are likely
the most compelling alternatives to mgIGP. In particular,
[25] uses a joint collision avoidance feature in their inverse
reinforcement learning representation, and they learn the
weight of that feature from captured human data. However,
their experiments involve only a single person and a single
robot, and, in their own words, “in more densely populated
environments . . . it is not feasible to compute all topological
variants”. In other words, their current implementation is
unsuitable for real time implementation in dense crowds.

VI. EXPERIMENTAL RESULTS: QUANTITATIVE STUDIES

In [38] numerous metrics for evaluating human-robot in-
teraction are presented. Importantly, safety is pinpointed as
the most important. Accordingly, we evaluate the safety and
efficiency of the algorithms of Section V-B.

A. Robot Safety in Dense Human Crowds
We discuss the human density metric. First, we have normal-
ized to values between 0 and 1—thus, the highest density
(1 person/m2) is a shoulder to shoulder crowd. Further,
patrons rarely stand still; this constant motion increases
crowd complexity. Anecdotally, humans found crowd densi-
ties above 0.8 people/m2 to be extremely difficult to teleoper-
ate through, and densities above 0.4 people/m2 challenging.

We define safety as a binary variable: either the robot
was able to navigate through the crowd without collision
or it was not. Obviously, we could not allow the robot to
collide with either walls or people, and so a protocol for

Figure 2: Decoupling safety decrement.

sion avoidance (decoupled robots and agents), complexity is NP-Hard [Canny and Reif(1987)];

for continuous time Bayesian networks (similar to crowd navigation), complexity is also NP-

hard [Sturlaugson and Sheppard(2014)]. This complexity is easily visualized: for a planar dis-

cretized action space of nt agents, each agent can move in 8 directions at each time step. For

prediction horizon T , then, the system has O(8
ntT ) states.

Interestingly, you also see two state of the art DRL planners exhibit either overaggressive-ness or

overcautious-ness; we tried to tune SARL to the peculiarities of our test suite, but it made no

performance di↵erence.

Finally, you can see as we add various improvements to our interactive model, the safety-e�ciency

ellipse moves progressively closer to human performance (soIGP models human-human and robot-

human interaction (“second order IGP”), foIGP models only robot-human interaction (“first order”

IGP ignores human-human interaction), and soIGP lin is soIGP with a linear prediction model).

To me, the lesson here is twofold: 1) modeling robot agent interdependence is a crucial performance

factor for any real world robot (unless you can guarantee that nobody will interact with the robot)

and 2) its really hard to balance safety and e�ciency as well as a human. That is, it is pleasantly

surprising that humans would exhibit such balanced behavior against such reductionist metrics as

safety and e�ciency.

(It’s worth mentioning that the self driving car community has seen a surge of interest in merging

and intersections in the last few years; I don’t think this is a coincidence. Based on the conversa-

tions I?ve had, the community (from about 2010-2017) was reluctant to talk about coupled models

(if we have to use coupled models, computation becomes non-convex ), probably because they were

focused on areas that didn’t involve coupling (even tra�c jams are rarely coupled). As the self

driving car industry moved into more unconstrained environments, it became clear that basic

functionalities like merging was indeed a coupled process. I realize this is an over generalization of

the industry—Cruise has been showing pretty demanding interaction events for a few years now.)

Large safety decrement at all densities
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Necessity of Coupled Models
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u(t+ 1) = fR⇤(t+ 1)
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[fR,h]⇤ = argmax
fR,h

p(h, fR | zhT, zRT)

<latexit sha1_base64="fPabCCmh9W643QB9Ficc8Ovafwo="></latexit>

where

p(h, fR | zhT, zRT) =  (h, fR, �)p(fR | zRT)p(h | zhT)
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p(fR,h1,h2 | z)
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[fR,h1,h2]⇤
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u(t+ 1)
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• What must  (h, fR, �) model?

• How can  (h, fR, �) model it?



The How and What of Interaction
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Corollary: Mismodeling flexibility leads to a) overaggressive or b)
overcautious (FRP) robot
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Theorem: Crowd navigation cost is statistically valid ()
cost only a function of the full set of mixture statistics ()
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! Provide statistically valid interaction function PIGP
¬

! Provide a real time locally optimal solver



Crowd Navigation Evaluation Challenges

• Real world deployment 
expensive: 6 months-year to 
deploy statistically valid study
• ORCA, Social Forces based 

simulation non-discriminative
• Optimal policy is ”blind, straight 

line”

28 Ppl-0.25 ppl/m^2

ORCA sim collision rate, 0.05-0.25 people/m^2



ETH: 241 runs
“Leave one out” 
evaluation:
-Remove 1 human
-Start and goal
-Compare 
safety/efficiency of 
robot and human

distributions (Equations 3.1) in isolation of each other, we
are unlikely to find large [w⇤]⌘ . For example, MC 1e5 (see
Tables 1 and 2) draws 105 joint samples and then takes
the sample with largest [w⇤]⌘ as the robot action. Despite
the computation, MC 1e5 produces unsafe and long tra-
jectories. Instead of brute force enumeration, we seek the
N

⇤ ⌧ NBIG modes that best capture Equation 5.3.
We begin by treating µR

` , µf i

ki
as functions xR,`,xf i,ki

2
F(R) ! R2 mapping time to (x, y) position and search for
the x⇤
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that optimize [w⇤]⌘ . We define
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We use the logarithm to improve numerical accuracy.
Definition 9. Let
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We seek arg maxxR,`,xf
log �nt(xR,`,xf ). To understand

the behavior of log �nt(xR,`,xf ), note that the triple
product rewards cooperative collision avoidance while the
quadratics penalize solutions that deviate from agent intent.

Unfortunately, log �nt(xR,`,xf ) is non-convex. How-
ever, by using Newton’s method and carefully chosen ini-
tializations we recover strong performance (see Section 7).
We first tried automatic differentiation but it was exceed-
ingly slow. Instead, we used hand coded derivatives (see
the supplement) and autograd for numerical validation. Fi-
nally, since trajectories near the mean ± standard deviation
multiples have high probability, we seed the optimizations
with (µR

, µf ) ± (0, [�R
, �

f ], 2[�R
, �

f ], 3[�R
, �

f ]), where

�
R =

q
diag(⌃R), �

f =
q

diag(⌃f ). Numerical exper-
iments support this idea (see Section 7).

Additionally, Newton optimization provides insight about
agents most important to the optimization. In particular, we
computed the first step of the Newton optimization for each
agent and the robot and then computed the effective sample

size (ESS) (Doucet and Johansen 2008) of nt robot-agent
pairs to determine how many agents are statistically signifi-
cant to the optimization. Importantly, ESS finds the signifi-
cant agents at each time step. A shortcoming is that by only
considering robot-agent pairs, we risk ignoring inter-agent
effects. Letting H be the Hessian and r the gradient, let

�x`,ki =
���
⇥
H(log �nt(xR,`,xf i,ki

))
⇤�1 r(log �nt(xR,`,xf i,ki

))
���

be the norm of the first Newton step.
Definition 10 (ESS). Let �x`,ki be the normalization of
�x`,ki . Then compute

ESS =
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ntY
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Finally, we define our action protocol (c.f. Equation 3.2):
Definition 11 (Generative crowd planning). At time t

compute arg maxxR,`,xf
log �nt(xR,`,xf ) using the top

ESS agents and issue the command u
R
t = x⇤

R,`(t + 1).

7 Evaluation

Rationale for dataset We considered the crowd datasets
ETH (Pellegrini et al. 2009) and UCY (Lerner, Chrysan-
thou, and Lischinski 2007) and the crowd simulators PED-
SIM (Gloor 2016) and Menge (Curtis, Best, and Manocha
2016). Our concern with simulation is that overly aggressive
robot behavior is often permitted. For example, our Monte
Carlo IGP produced zero collisions in PEDSIM, whereas in
this study it was unsafe in 17% of runs (row 6, Table 1). The
study in (Chen et al. 2019) observed zero “socially aware
reinforcement learning (SARL)” collisions, whereas we ob-
served unsafe runs 17% of the time (row 7, Table 1). These

Figure 4: First frame of the ETH data evaluated. Pedestrian current position in green;
next 40 time steps plotted as black curves. While other crowd datasets are useful, this
subset of ETH has the highest pedestrian density and frequency of interaction; every
agent thus provides a challenging navigation negotiation test.



Evaluation: Partial Runs
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Figure 5: Partial trajectory statistics. Total number of runs is 181; x, y axes in meters. All x-axes plot distance to nearest pedestrian; (a) plots means ± 1 standard deviation of
algorithm and human; (b) appends plot (a) with dmin threshold, the closest distance two humans passed in the dataset. Inspection of region left of dmin shows numerous instances
of DWA, MC 1e5, and SARL; (c) normalizes algorithm path length with human path length. E.g., values below dr = dh mean the robot moved to goal more directly than human.

µ(s) %s<0.3 %s<0.21 µ(dr) %dr/dh>1.25 max(dr/dh) µ(t) µ(⇢)
Human 1.1 ± .2m 1.6% 0% 8.7 ± 1.0m NA NA NA .22±.15
IGP Full .9 ± .3m 9% 5% 8.9 ± 1.2m 1% 1.3 .2 ± .15s .23± .12
IGP Diag .9 ± .4m 18% 9% 8.6 ± 1.3m 2% 1.2 .13 ± .11s .19± .3
IGP Lin .9 ± .3m 13% 8% 9.2 ± 1.5m 8% 1.5 .14 ± .07s .2 ± .14
DWA .6 ± .4m 35% 24% 12.1 ± 2.5m 48% 4.1 .1 ± .03s .23 ± .1
MC 1e5 .6 ± .3m 30% 17% 13.3 ± 3.5m 62% 3.9 2.3 ± 2.5s .2 ± .3
SARL* .4 ± .15m 37% 17% 8.3 ± 2.2m 1% 1.5 1.3 ± .13s .22 ± .1

*SARL was trained in five different environments; we report the best performing network.
Table 1: Partial trajectory metrics. For each run, distance to nearest pedestrian is s and µ(s) is the mean; %s<0.3, %s<0.21 are the percent of runs that s < 0.3m, 0.21m;
µ(dr) is mean robot path length dr over all runs; %dr/dh>1.25 is percent of runs that dr was 1.25 times human path length dh; µ(t) is mean time of all replanning steps; and
µ(⇢) is mean density over all runs (density is number of people in a 3m radius circle around robot, in people/m2).

elevated performance statistics are due to the overly flexi-
ble simulated humans. From an evaluation perspective, this
makes reporting vulnerable to false positives. The agents can
be more aggressively tuned; however, we then risk tuning the
simulation to optimize algorithm performance.

Alternatively, many trajectories in the ETH and UCY
datasets have little or no interaction. We can tell that ETH
and UCY is mostly linear by looking at the results in
recent studies that benchmarked over the whole of both
datasets (Alahi, Goel, and et al 2016), (Gupta et al. 2018):
linear extrapolation error rates were very low (e.g., 0.39m
“average displacement error” over a 5 second prediction
horizon for the hotel dataset). This indicates that the dataset
itself is, in total, too simple. Thus, testing against all of ETH
runs the risk of being non-discriminative because straight
line solutions are often available (i.e., all algorithms would
have high efficiency and low collision rates).

However, a subsample of the ETH dataset (Figure 4; 100
frames, 150 pedestrians) collected for training a deep net-
work in (Ivanovich and Pavone 2019) has many interactions
and substantial congestion; indeed, every pedestrian inter-
acts at least once and most pedestrians interact many times
during the 100 frame sequence. Ultimately, we chose this
subset of ETH so that evaluation would be discriminative.
By partitioning our dataset into partial and full trajectories
we generated 214 test runs, which provides enough statisti-

cal power to draw conclusions. Conversely, if we had added
numerous weak interaction runs, statistical power would de-
crease (all algorithms would find the straight line solution).

Further, canned crowd datasets do not immediately sug-
gest a navigation testing protocol (ETH and UCY are typi-
cally used to benchmark prediction algorithms, where test-
ing protocol is straightforward). To derive a navigation test
protocol, we expand on an idea from the experimental sec-
tion of (Trautman and Krause 2010): 1) identify a pedestrian,
2) extract the start and end position of that pedestrian, 3) re-
move that pedestrian from the observation dataset of the nav-
igation algorithm, and 4) provide the start and end positions
of the removed pedestrian and the current and previous po-
sitions of the remaining agents to the navigation algorithm.
Thus we assure that at least one path through the crowd ex-
ists (the one taken by the removed pedestrian). Addition-
ally, by providing the navigation algorithm with start and
end points that are joined by a path through the crowd, the
navigation algorithm naturally confronts high crowd densi-
ties (µ(⇢) column, Tables 1 and 2). Finally, this testing pro-
tocol provides us with a powerful performance benchmark:
actual human performance on the exact same situation as
encountered by the algorithm.

Furthermore, we partition this dataset into what we call
“partial” and “full” trajectory datasets. In the partial tra-
jectory dataset, we considered all (approximately) 10 me-
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Figure 5: Partial trajectory statistics. Total number of runs is 181; x, y axes in meters. All x-axes plot distance to nearest pedestrian; (a) plots means ± 1 standard deviation of
algorithm and human; (b) appends plot (a) with dmin threshold, the closest distance two humans passed in the dataset. Inspection of region left of dmin shows numerous instances
of DWA, MC 1e5, and SARL; (c) normalizes algorithm path length with human path length. E.g., values below dr = dh mean the robot moved to goal more directly than human.
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elevated performance statistics are due to the overly flexi-
ble simulated humans. From an evaluation perspective, this
makes reporting vulnerable to false positives. The agents can
be more aggressively tuned; however, we then risk tuning the
simulation to optimize algorithm performance.

Alternatively, many trajectories in the ETH and UCY
datasets have little or no interaction. We can tell that ETH
and UCY is mostly linear by looking at the results in
recent studies that benchmarked over the whole of both
datasets (Alahi, Goel, and et al 2016), (Gupta et al. 2018):
linear extrapolation error rates were very low (e.g., 0.39m
“average displacement error” over a 5 second prediction
horizon for the hotel dataset). This indicates that the dataset
itself is, in total, too simple. Thus, testing against all of ETH
runs the risk of being non-discriminative because straight
line solutions are often available (i.e., all algorithms would
have high efficiency and low collision rates).

However, a subsample of the ETH dataset (Figure 4; 100
frames, 150 pedestrians) collected for training a deep net-
work in (Ivanovich and Pavone 2019) has many interactions
and substantial congestion; indeed, every pedestrian inter-
acts at least once and most pedestrians interact many times
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By partitioning our dataset into partial and full trajectories
we generated 214 test runs, which provides enough statisti-

cal power to draw conclusions. Conversely, if we had added
numerous weak interaction runs, statistical power would de-
crease (all algorithms would find the straight line solution).

Further, canned crowd datasets do not immediately sug-
gest a navigation testing protocol (ETH and UCY are typi-
cally used to benchmark prediction algorithms, where test-
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Conclusion

• Provided constraints on permissible 
interaction functions (for GP 
mixtures)

• Flexibility key to mitigating freezing 
robot problem

• Provided a discriminative evaluation 
scenario

Next steps:
• Deploy in real world


