

RESEARCH SCHOOL OF COMPUTER SCIENCE

Information Decay + POMDP

Incorporating Defender's Behaviour in Autonomous Penetration Testing

Jonathon Schwartz¹, Hanna Kurniawati¹, and Edwin El-Mahassni²

¹ Research School of Computer Science, ANU

² Defence Science and Technology Group, Australian Department of Defence

Network Penetration Testing

Autonomous Penetration Testing

- We can view penetration testing as a sequential decision problem.
- Three sources of uncertainty:
- 1. Partial observability

2. Unreliable attack 3. The defender tools

Method	Partial	Unreliable	Defender
	observability	actions	
Attack planning	no	yes	no
(Lucangeli et al, SecArt '10)			
POMDP	yes	yes	no
(Sarruate et al, AAAI '12)			
Stochastic game	no	yes	yes
(Lye and Wing, IJIS '05)			
This work	yes	yes	yes

Partially Observable Markov Decision Process $(S, A, T, O, Z, R, \gamma)$

Idea for incorporating the defender

Pen-tester and defender can only infer each other via observed changes to the network state.

Our proposed idea: Model defender's behaviour as a Markovian Arrival Process (MAP)

Information Decay

This work: Bernoulli process.

Model defender by single parameter: the information decay factor d.

Intuitively, *d* is probability that the defender mitigates the pen-tester's action

For each system property we assume the same process and that each process is IID.

Given $\mathcal{P} = \langle S, A, T, O, Z, R, \gamma \rangle$

Let I(a) be the affected set of $a \in A$, where $i \in I(a)$ iff state variable s_i is changed or observed by a

Define transition T_d for state variable s_j :

$$T_d\left(s'_j \mid s_j, a\right) = \begin{cases} T\left(s'_j \mid s_j, a\right) & j \in \mathbb{I}(a) \\ d \cdot \frac{1}{|S'_j| - 1} & j \notin \mathbb{I}(a) \text{ and } s'_j \neq s_j \\ 1 - d & \text{otherwise.} \end{cases}$$

Requires knowing *d* beforehand.

Given D-PenTesting POMDP $\mathcal{P}_d = \langle S, A, T_d, O, Z, R, \gamma \rangle$

Define LD-PenTesting POMDP $\mathcal{P}_{ld} = \langle S_{ld}, A, T_{ld}, O, Z_{ld}, R_{ld}, \gamma \rangle$, where:

- + A, O, γ are unchanged from \mathcal{P}_{d}
- $S_{ld} = S \times D$, where
 - D represents possible values of d
 - + D discretised to resolution δ
 - Increases |S| by $\frac{1}{\delta}$ fold
- $Z_{ld}(\langle s, d \rangle, a, o) = Z(s, a, o)$
- $R_{ld}(\langle s, d \rangle, a) = R(s, a)$
- $T_{ld}(\langle s, d \rangle, a, \langle s', d' \rangle) = T_d(s, a, s') \cdot \Delta_{dd'}$
 - $\cdot\,$ where $\Delta_{\textit{dd'}}$ is the Kronecker Delta (identity) function
 - T_d is transition function with decay factor d

Experimental Scenarios

Scenario 1

Extends original scenario proposed for POMDP pen-testing by *Sarruate et al (AAAI '12)* to include a defender.

Scenario 2

Extends stochastic game scenario proposed by *Lye and Wing (IJIS '05)* to partially observable setting.

Planning

- Planning using SARSOP offline POMDP solver (*Kurniawati et al, RSS '08*)
- D-PenTesting and LD-PenTesting given no knowledge of defender during planning

Simulation

• Tested each pen-tester agent against different defenders in simulation

POMDP-PenTesting vs D-PenTesting vs LD-PenTesting

D-PenTesting performance

D-PenTesting vs LD-PenTesting

- Presented efficient abstract defender model based on MAP
- Incorporated this model to create D-PenTesting and LD-PenTesting.
- Our approach can handle the three main sources of uncertainty:
 - 1. partial observability,
 - 2. unreliable attack tools, and
 - 3. the defender

Thank you for listening. Questions?