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Markov Decision Process (MDP) and its applications

MDPs have been applied to conservation
in bio-diversity:

e to help recover populations under
limited resources;

to control invasive species;

to manage fisheries;

to perform adaptive management of
natural resources;

to test behavioral ecology theories.

Example:
e Recovering two endan-
gered species problem

[Chades et al., 2012].

e Managing an ecological net-
work of invasive species
[Péron et al., 2017].

Fully observable, probabilistic state mod-
els. An MDP is specified as (S, A, T, r, ),
where:

e S is the set of fully observable
states;

A is the set of actions;
T:SxAxS —[0,1] is a proba-
bilistic transition function;

r:S x A— [0, Rnag is the reward
function.

v € [0, 1] is a discount factor.

Solutions are functions (policies) mapping
states into actions.
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Recovering two endangered species:
A non-interpretable policy

Figure 1: Recovering two endangered species MDP policy graph with 819 states and 4 manage-
ment actions [Chades et al., 2012].
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Building more interpretable models and solutions

Motivation:

e Can we increase models and solutions interpretability in human oper-
ated systems?

Our aim:

e Generate a reduced state space MDP that minimizes the difference
between the original optimal MDP value function and the reduced op-
timal value function.

We define the problem of solving K-MDPs, given:
e An original MDP.
e A constraint on the number of states (K).

x We are not trying to solve large MDPs.
v We are trying to find the most compact MDP model and policy.
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K-MDPs: General problem statement

Our contribution:

A K-MDP My = (Sk, A, Tk, 7,7, ¢) is an MDP where: the
e Sy is areduced state set of size at most K;
e A is the original set of actions;
o Tk :Sg x Ax Sk — [0,1] is the probability transition function;
o g Sg X A— [0, Rz is the reward function;
e 7 is the discount factor;
e ¢ is a mapping function from S to Sk.

An optimal solution for a K-MDP is a policy 77 : Sk — A that maximizes
the expected sum of discounted rewards.
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K-MDPs: General problem statement

Our contribution:

A policy 77 can be applied to the original MDP by using the mapping func-
tion ¢, with the associated value function:

t=H
VQ;TK(S) =F ( vor(se, T (0(se)))]s0 = s) , (1)

t=0

We formulate the problem of finding the best reduced state space (|Sx| <
K) as a gap minimization problem:

*: . VTF* _Vﬂ-K 2
gap sKep<I§f?sKngI?ea§([ (s) = V= (s)], (2)
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K-MDPs using state abstraction

Lets define a K-MDP as M = (Sk, A, Tk, 7,7, D)
e Sk = {¢o(s)|s € S} the abstract state space and ¢ : S — Sk;
— The inverse of function ¢~ 1(sx) : S — S.
e A is the same set of actions as in the original MDP model.
e T is the abstract K-MDP probability transition function:

Tk (sk,a,sy) = ZS€¢_1(SK) Zs’&b_l(s’K) T(s,a, s )w(s), where:
- Vsg € Sk, <286¢1(8K)w(3)> =1l and w(s) € [0, 1]

o 7 is the abstract reward function: rc(sx, a) = 3 c 15, 7(8, @)w(s).

Solving K-MDPs: Slide 7 of 18



Proposed algorithms

Algorithm Function Predicate Value Loss Trans.
$q: K-MDP-ILP new $qx [Abel et al., 2016] | max, |Q*(i,a) — Q*(j,a)| < € | max,es V™ (s) — V;Q{ (s) < 2(;’};;; No
¢q: I -MDP new g [Abel etal., 2018] | Va | L0 | = | &) max,es V™ (s) — VJQ’; (s) < 2l | Yes
¢a; K -MDP new Gaz NEW al = a; A %@ = V;(j) max,es V™ (s) — Vq;;’g(s) < 25’;)“; Yes
$q: Greedy K-MDP new | ¢q- [Abel et al.,, 2016] | max, |Q*(i,a) — Q*(j,a)| < ¢ | maxes V™ (s) — V;Cfi (s) < 2(;1};;; No
k-means++ K-MDP new | - new - - Yes

Table 1: Summary of proposed algorithms.

e Four algorithms based on binary search on € and d:

— Finding the best ¢ and d that will guarantee the best perfor-
mance.

e One algorithm based on a clustering technique.
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Proposed algorithms: The ¢ {-MDP-ILP algorithm

0Q:(1) = 0q:(j) = max|Q™(i,a) = Q°(j,a)| < e (3)

Issue: Non-transitive.

Solution: We solve the problem as a minimum clique node cover problem
by building a graph C' of possible aggregations [Brigham and Dutton, 1983]:

e 0(i,7) = max, |Q*(i,a) — Q*(j,a)|,i,j € Sand a € A,
e i and j can be aggregated if §(i, j) < e.
Mathematically elegant but inefficient:
e Limited by its computational complexity:
— O(log ma$z’,j€S5(iaj)2K|S|)_

Ptarget
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Proposed algorithms: The gb% K-MDP algorithm

Previous algorithm has limitations.
Based on a transitive approximate abstraction function ¢q [Abel et al., 2018]:

0q;(1) = 0gy(j) = Va [Q*g’“)w - {Q*(;’, Cﬂ

(4)

e A set of states belong to the same cluster if they belong to the same
bin.

e Binary search on d:
— As bins size decrease, abstraction is more precise.
o O(|S]log(;X)).

Ptarget
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Proposed algorithms: The %2 K-MDP algorithm

Our new state abstraction contribution:
e The approximate transitive state abstraction function ¢, satisfies:

| | L TV V*(j
basli) = buyli) = ai:ajA[ ” :[ d(ﬂ 5)

e More restrictive.
— States must have same optimal action.

e Abstraction not guarantee if K is smaller than the number of actions in
the optimal policy.

o O(|S|log(;M2%)).

Ptarget
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Proposed algorithms: The k-means++ /{-MDP algorithm

e State abstraction using a clustering technique.
e Interesting, but we don’t have a loss of performance.
e Minimize the average squared distance between points in the same

cluster.
e k-means++ with the optimal () function and norm L1 to define the state
space Sk
> min [[Q7(s, ) = Q(sxc. )l (6)
SKESK
sES

e Complexity O(nkdi).
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Recovering two endangered species

Problem published in 2012 [Chades et al., 2012];

|S|=819|A|=4
40% T T T T T T T
TH-I—I-HI' —&— k-means++ K-MDP
350, | | \ +H——H— n -’T * r'JD;K-M DP
_HxH-r— L |
-t—l _H_ _H.,’_l | ¢ rba; K-MDP
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LM I -
25% |- |Jr|'+H_ I |t/ |
N (NN T
 20% [ |l || -lll-'
|

15%
10% Prxer :.._'

5% b kb

Figure 2: Performance of K'-MDP algorithms on the sea otter and northern abalone conservation
problem .
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Recovering two endangered species: Reduced model
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Figure 3: Sea Otter and Northern Abalone state representation over the abalone density and
otter abundance. (a) Original 819 states. (b) /i = 5 abstract states.
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Recovering two endangered species: Reduced policy

Introducing(1)
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Figure 4: Recovering two endangered species /K-MDP model policy graph.
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Summary

e Our approach aims at increasing uptake of MDPs in human operated
systems by providing easier to interpret models and solutions.

e We have employed transitive approximate state abstraction functions
to solve K-MDPs.

e We have proposed to use a clustering technique k-means++ and a
binary search greedy approach.

Immediate future work:

e Testing the interpretability of proposed K-MDPs solutions.
Challenges:

e Visualization and interpretability of models and solutions with a large
number of state variables.
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