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Markov Decision Process (MDP) and its applications

MDPs have been applied to conservation
in bio-diversity:

• to help recover populations under
limited resources;
• to control invasive species;
• to manage fisheries;
• to perform adaptive management of

natural resources;
• to test behavioral ecology theories.

Example:

• Recovering two endan-
gered species problem
[Chades et al., 2012].
• Managing an ecological net-

work of invasive species
[Péron et al., 2017].

Fully observable, probabilistic state mod-
els. An MDP is specified as 〈S,A, T, r, γ〉,
where:

• S is the set of fully observable
states;
• A is the set of actions;
• T : S × A × S → [0, 1] is a proba-

bilistic transition function;
• r : S × A→ [0, Rmax] is the reward

function.
• γ ∈ [0, 1] is a discount factor.

Solutions are functions (policies) mapping
states into actions.
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Recovering two endangered species:
A non-interpretable policy

Figure 1: Recovering two endangered species MDP policy graph with 819 states and 4 manage-
ment actions [Chades et al., 2012].
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Building more interpretable models and solutions

Motivation:
• Can we increase models and solutions interpretability in human oper-

ated systems?
Our aim:
• Generate a reduced state space MDP that minimizes the difference

between the original optimal MDP value function and the reduced op-
timal value function.

We define the problem of solving K-MDPs, given:
• An original MDP.
• A constraint on the number of states (K).

×We are not trying to solve large MDPs.
We are trying to find the most compact MDP model and policy.
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K-MDPs: General problem statement

Our contribution:

A K-MDP MK = 〈SK , A, TK , rK , γ, φ〉 is an MDP where: the
• SK is a reduced state set of size at most K;
• A is the original set of actions;
• TK : SK × A× SK → [0, 1] is the probability transition function;
• rK : SK × A→ [0, Rmax] is the reward function;
• γ is the discount factor;
• φ is a mapping function from S to SK .

An optimal solution for a K-MDP is a policy π∗K : SK → A that maximizes
the expected sum of discounted rewards.
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K-MDPs: General problem statement

Our contribution:

A policy π∗K can be applied to the original MDP by using the mapping func-
tion φ, with the associated value function:

V
π∗K
φ (s) = E

(
t=H∑
t=0

γtr(st, π
∗
K(φ(st)))|s0 = s

)
. (1)

We formulate the problem of finding the best reduced state space (|SK | ≤
K) as a gap minimization problem:

gap∗ = min
SK∈P (S), |SK |≤K

max
s∈S

[V π∗(s)− V π∗K
φ (s)], (2)
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K-MDPs using state abstraction

Lets define a K-MDP as MK = 〈SK , A, TK , rK , γ, φ〉:
• SK = {φ(s)|s ∈ S} the abstract state space and φ : S → SK ;

– The inverse of function φ−1(sK) : SK → S.
• A is the same set of actions as in the original MDP model.
• TK is the abstract K-MDP probability transition function:
TK(sK , a, s

′
K) =

∑
s∈φ−1(sK)

∑
s′∈φ−1(s′K) T (s, a, s

′)ω(s), where:

– ∀sK ∈ SK ,

(∑
s∈φ−1(sK) ω(s)

)
= 1 and ω(s) ∈ [0, 1]

• rK is the abstract reward function: rK(sK , a) =
∑

s∈φ−1(sK) r(s, a)ω(s).
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Proposed algorithms

Algorithm Function Predicate Value Loss Trans.

φQ∗
ε
K-MDP-ILP new φQ∗

ε
[Abel et al., 2016] maxa |Q∗(i, a)−Q∗(j, a)| ≤ ε maxs∈S V

π∗
(s)− V π∗

K
φQ∗

ε
(s) ≤ 2εRmax

(1−γ)2 No

φQ∗
d
K-MDP new φQ∗

d
[Abel et al., 2018] ∀a

⌈
Q∗(i,a)

d

⌉
=

⌈
Q∗(j,a)

d

⌉
maxs∈S V

π∗
(s)− V π∗

K
φQ∗

d

(s) ≤ 2dRmax
(1−γ)2 Yes

φa∗dK-MDP new φa∗d new a∗i = a∗j ∧
⌈
V ∗(i)
d

⌉
=

⌈
V ∗(j)
d

⌉
maxs∈S V

π∗
(s)− V π∗

K
φa∗
d

(s) ≤ 2dRmax
(1−γ)2 Yes

φQ∗
ε

Greedy K-MDP new φQ∗
ε

[Abel et al., 2016] maxa |Q∗(i, a)−Q∗(j, a)| ≤ ε maxs∈S V
π∗
(s)− V π∗

K
φQ∗

ε
(s) ≤ 2εRmax

(1−γ)2 No

k-means++ K-MDP new - new - - Yes

Table 1: Summary of proposed algorithms.

• Four algorithms based on binary search on ε and d:
– Finding the best ε and d that will guarantee the best perfor-

mance.
• One algorithm based on a clustering technique.
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Proposed algorithms: The φQ∗εK-MDP-ILP algorithm

φQ∗ε (i) = φQ∗ε (j) =⇒ max
a
|Q∗(i, a)−Q∗(j, a)| ≤ ε. (3)

Issue: Non-transitive.

Solution: We solve the problem as a minimum clique node cover problem
by building a graph C of possible aggregations [Brigham and Dutton, 1983]:
• δ(i, j) = maxa |Q∗(i, a)−Q∗(j, a)|, i, j ∈ S and a ∈ A.
• i and j can be aggregated if δ(i, j) ≤ ε.

Mathematically elegant but inefficient:
• Limited by its computational complexity:

– O(log
maxi,j∈Sδ(i,j)

ptarget
2K|S|).
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Proposed algorithms: The φQ∗d K-MDP algorithm

Previous algorithm has limitations.
Based on a transitive approximate abstraction function φQ∗d [Abel et al., 2018]:

φQ∗d(i) = φQ∗d(j) =⇒ ∀a
⌈
Q∗(i, a)

d

⌉
=

⌈
Q∗(j, a)

d

⌉
(4)

• A set of states belong to the same cluster if they belong to the same
bin.
• Binary search on d:

– As bins size decrease, abstraction is more precise.

• O(|S| log( VMAX
ptarget

)).
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Proposed algorithms: The φa∗d K-MDP algorithm

Our new state abstraction contribution:
• The approximate transitive state abstraction function φa∗d satisfies:

φa∗d(i) = φa∗d(j) =⇒ a∗i = a∗j ∧
⌈
V ∗(i)

d

⌉
=

⌈
V ∗(j)

d

⌉
(5)

• More restrictive.
– States must have same optimal action.

• Abstraction not guarantee if K is smaller than the number of actions in
the optimal policy.

• O(|S| log( VMAX
ptarget

)).
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Proposed algorithms: The k-means++ K-MDP algorithm

• State abstraction using a clustering technique.
• Interesting, but we don’t have a loss of performance.
• Minimize the average squared distance between points in the same

cluster.
• k-means++ with the optimal Q function and norm L1 to define the state

space SK :

∑
s∈S

min
sK∈SK

||Q∗(s, ·)−Q∗(sK , ·)||2. (6)

• Complexity O(nkdi).
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Recovering two endangered species

Problem published in 2012 [Chades et al., 2012];

Figure 2: Performance ofK-MDP algorithms on the sea otter and northern abalone conservation
problem .
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Recovering two endangered species: Reduced model

(a) State space representation. (b) Abstract state space representation.

Figure 3: Sea Otter and Northern Abalone state representation over the abalone density and
otter abundance. (a) Original 819 states. (b) K = 5 abstract states.
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Recovering two endangered species: Reduced policy

Figure 4: Recovering two endangered species K-MDP model policy graph.
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Summary

• Our approach aims at increasing uptake of MDPs in human operated
systems by providing easier to interpret models and solutions.
• We have employed transitive approximate state abstraction functions

to solve K-MDPs.
• We have proposed to use a clustering technique k-means++ and a

binary search greedy approach.
Immediate future work:
• Testing the interpretability of proposed K-MDPs solutions.

Challenges:
• Visualization and interpretability of models and solutions with a large

number of state variables.
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