PDDLStream: Integrating Symbolic Planners and

Blackbox Samplers via Optimistic Adaptive Planning

Caoelan R. Garrett, Tomds Lozano-Pérez,

and Leslie P. Kaelbling
ICAPS 2020

Contact: caelan(@csail.mit.edu

Videos: https://tinyurl.com/pddistream

Code: https://github.com/caelan/pddIistream

IIII-
TR

LIS

LEARNING &
INTELLIGENT
SYSTEMS

mailto:caelan@csail.mit.edu
https://tinyurl.com/pddlstream
https://github.com/caelan/pddlstream

Task and Motion Planning (TAMP)

» Robot plans high-level actions
& low-level controls

= Plan in a high-dimensional
and hybrid space

= Continuous/discrete variables:

= Robot configuration, object
poses, is-on, is-in-hand, ...

= Actions: move, pick, place,
push, pour, detect, cook, ...

Manipulation: “Cooking”

AT

=Nl "

- =

Planner Produces Continuous Values

= Continuous action parameter values must satisfy
dimensionality-reducing constraints

= Geometric constraints limit high-level strategies
= Kinematics, reachability, joint limits, collisions,
graspability, visibility, STCIbI|I1'y ~. legd SR
Ly —— - T _i L
-

'\ 2
\

3
Y 4
,.f.\

Prior TAMP Work

Numeric Planning & Semantic Attachments - [Fox,
Dornhege, Gregory, Cashmore]

Assumes a finite action space

Task & Motion Interface - [Cambon, Kaelbling, Erdem,
Srivastava, Garrett, Dantam]

Application specific, no generic problem description
Multi-Modal Motion Planning - [Siméon, Hauser, Toussaint]

Brute-force hybrid state-space search

No general-purpose, flexible framework for modeling @
variety of TAMP domains

Our Approach: PDDLStream

Extends Planning Domain Definition Language (PDDL)

Modular & domain-independent

Enables the specification of sampling procedures

Can encode domains with infinitely-many actions

Admits generic algorithms that operate using the
samplers as blackbox inputs

The user only needs to specify the samplers

- PDDLStream Language

2D Pick-and-Place Example

Goal: block A within the red region
Robot and block poses are continuous [x, y] pairs

Block B obstructs the placement of A

Movable Blocks

Robot Vacuum Gripper / \

Placement Regions

2D Pick-and-Place Solution

Discrete form of one (of infinitely many) solutions

move, pick B, move, place B,
move, pick A, move, place A

2D Pick-and-Place Initial & Goal

Some constants are numpy arrays

Static initial facts - value is constant over time

(Block, A), (Block, B), (Region, red), (Region, grey),

(Conf, [-7.5 5.]), (Pose, A, [0. 0.]), (Pose, B, [7.5 O.]),
(Grasp, A, [0. -2.5]), (Grasp, B, [0. -2.5])

Fluent initial facts - value changes over time

(AtConf, [-Z.5 3.]), (HandEmpty),
(AtPose, A, [0. 0.]), (AtPose, B, [Z7.5 0.])

Goal formula: (exists (?p) (and (Contained A ?p red)
(AtPose A ?p)))

2D Pick-and-Place Actions

Typical PDDL action description except that arguments
are high-dimensional & continuous!

To use the actions, must prove the following static facts:

(Motion ?gl 2?2t ?7g2),

(:action move

:parameters (?gl ?t ?2g2)
:precondition (and (Motion ?gl 2t ?gZ) (AtConf ?2gl))

:effect (and (AtConf ?g2) (not

(:action pick

:parameters (?b ?p g ?7q)

:precondition (and (Kin ?b ?p ?g ?Qg)
(AtCont 7?qg) (AtPose 7?b ?p) (HandEmpty))
:effect (and (AtGrasp ?b ?2qg)

(not

(AtPose ?b 7p)) (not

(Kin ?b ?p ?g ?2q)

(Hand]

(AtCont ?2gl))))

mpty))))

Search in Discretized State Space
12

= Suppose we were given the following additional static facts:

= (Motion, [-7.5 5.], 11, [0. 2.5]), (Motion, [-7.5 5.], T2, [-5. 5.]),
(Motion, [-5. 5.], T3, [0. 2.5]), (Kin, A, [O. 0.], [O. -2.5], [O. 2.5]), ...

(AtConf, [0. 2.5])
(AtPose, A, [O. O.])
(AtPose, B, [7.5 0.])

(move, [-7.5 5.], T1, [O. 23 (HandEmpty) (pick, A, [0. 0.], [0. -2.5], [0. 2.5])
Initiql Ei’rgonf,_&ﬂ-g 5O]j)) (AtConf, [0. 2.5])
tPose, A, [O. 0. (AtGrasp, A, [0. -2.5]) = @ @ @
State gﬁ\tPo;E, B,t[7).5 0.]) (AtPose, B, [7.5 0.])
andEmpty | |
| | \ (move, [-5. 5.], 13, [O. 2.5])

(move, [-7.5 5.], T2, [-5. 5.]) (AtConf, [-5. 5.])
(AtPose, A, [0. 0.])
(AtPose, B, [7.5 0.]) — ® © ®

(HandEmpty)

No a Priori Discretization

Values given at start:
1 initial configuration: (Conf, [-7.5 5.])
2 initial poses: (Pose, A, [0. 0.]), (Pose, B, [7.5 0.])
2 grasps: (Grasp, A, [0. -2.5]), (Grasp, B, [0. -2.5])

Planner needs to find:

1 pose within a region: (contain A 2p red)

1 collision-free pose: (crree A 2p 2 B 2p2)
4 grasping configurations: (kin ?b ?p 2g 2q)

4 robot trajectories: (Motion 2ql 2t 2g2)

Stream: a function to a generator

Advaniages def stream(xl, x2, x3):
1 =0

Programmatic implementation ~ while True:
vyl = ix(x1 + x2)

Compositional y2 = i*x(x2 + x3)
o yield (yl, y2)
Supports infinite sequences i+=1

Stream - function from an input object tuple (x1, x2, x3)
to a (potentially infinite) sequence of output object

iuples [(Y]I YQ)I (y’h Y’Q)I voe]

A

Input X

Input x> |:| Outputs [(y1, Y2), (Y1, Y'2), -..]

Input x3

Stream Certified Facts

Obijects alone aren’t helpful: what do they represent?

Communicate semantics using predicates!

Augment stream specification with:
Domain facts - static facts declaring legal inputs

e.g. only configurations can be motion inputs

Certified facts - static facts that all outputs satisfy
with their corresponding inputs

e.g. poses sampled from a region are within it

Sampling Contained Poses
i

(:stream sample-region
:inputs (?b ?r)
:domain (and (Block ?b) (Region ?r))
:outputs (?p)
certified (and (Pose ?b ?p) (Contaln ?b ?p ?2r)))

def sample_region(b, r):

x_min, x_max = REGIONSI[r]

w = BLOCKS[b].width

while True:

X = random.uniform(x_min + w/2,

‘ X_max — w/2)
p = np.array([x, 0.])
yield (p,)

Block b
o 01
Regionr™

3

Sampling IK Solutions

2
* Inverse kinematics (IK) to produce robot grasping
configuration

= Trivial in 2D, non-trial in general (e.g. 7 DOF arm)

(:stream sample-1k
:inputs (?b ?p ?2g)
:domain (and (Pose ?b 7?p) (Grasp ?b ?2qg))
:outputs (7q)
:certified (and (Conf ?g) (Kin ?b ?p ?2g ?2q)))

Block b

-
Pose p —Pm Cont [(q'), (9”)]
-

Grasp @

PDDLStream = PDDL + Streams

18
» Domain dynamics (domain.pddl): declares actions

= Stream properties (stream.pdd|)

= Declares stream inputs, outputs, and certified facts
* Problem and stream implementation (problem.py)
= Initial state, Python constants, & goal formula

= Stream |mp|emen’ra’r|on using Python generators

Plan
w PDDLStream.
User provides
Planner ,
Supporting

Init & Godl Facts

- PDDLStream Algorithms

PDDLStream Algorithms

PDDLStream planners decide which streams to use

Our algorithms alternate between searching &
sampling:

1. Search a finite PDDL problem for plan
2. Modify the PDDL problem (depending on the plan)

Search implemented using any off-the-shelf classical
planner (e.g. FastDownward)

Optimistic Stream Outputs

Many TAMP streams are exceptionally expensive
Inverse kinematics, motion planning, collision checking
Only query streams that are identified as useful
Plan with optimistic hypothetical outputs

Inductively create unique first-class placeholder object
for each stream instance output (has # as its prefix)

Optimistic evaluations:

1. s-region:(block-A, red-region)->(#p0)
2. s-ik:(block-A, [0. 0.], [0. -2.5])->(#q0),
3. s-ik:(block-A, #pO0, [0. -2.5]) ->(#g2)

Binding (& =Focused) Algorithm
T

» Lazily plan using optimistic outputs before real outputs

= Recover set of streams used by the optimistic plan

= Repeat: Start

1. Construct active o

optimistic objects
Streams

2. Search with real & Optimistic W, Disabled
optimistic objects fc'c”s/ streams

3. If only real objects FastDownward Opf'lm'Sf'C ll Sample
used, return plan Search PIan Streams

Real pl ’
4. Sample used streams eal pian New facts

5. Disable used streams Done!

Problems with Tight Constraints

Example: pack 5 blue blocks into a small green region

Optimistic plan may be feasible but require o
substantial amount of rejection sampling

Binding algorithm would require many iterations

P

Adaptive Algorithm

» Balance computation time spent searching and sampling
= Adapts online to overhead of each phase per problem

» Gradually instantiate with new objects to keep finite PDDL
problems small & tractable Start

= Anytime mode to locally optimizes {
for low-cost plans

Search <
Sample Time

Yes

Optimistic
plan

No

Search for New Sample Existing

Optimistic Plan Optimistic Plan

Donel

Experiments: Coverage & Runtime
N

1.0 T—=

= Scale the number of blue = ncrementa
W7 Focused
blocks while the green | mmBinding
region maintains its size

A Adaptive

©
o

% solved

o
IN

= Adaptive solves the most

problems (and most quickly) -
for most difficult (5 blocks) oo

B Incremental
W Focused
B Binding
Bl Adaptive

runtime (sec)
N Ow B~ WU
o o () o

=
o O

3 4
blocks

Rovers Domain & Takeaways

= PDDLStream: generic extension of PDDL that supports
sampling procedures as blackbox streams

= Optimistic planning intelligently queries only a small
number of samplers

= Adaptively balancing searching & sampling performs best

