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Task and Motion Planning (TAMP)

■ Robot plans high-level actions 
& low-level controls 

■ Plan in a high-dimensional 
and hybrid space 

■ Continuous/discrete variables: 
■ Robot configuration, object 

poses, is-on, is-in-hand, … 
■ Actions: move, pick, place, 

push, pour, detect, cook, …
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Manipulation: “Cooking”
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Planner Produces Continuous Values
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■ Continuous action parameter values must satisfy 
dimensionality-reducing constraints 

■ Geometric constraints limit high-level strategies 
■ Kinematics, reachability, joint limits, collisions, 

graspability, visibility, stability



Prior TAMP Work

■ Numeric Planning & Semantic Attachments  - [Fox, 
Dornhege, Gregory, Cashmore] 
■ Assumes a finite action space 
■ Task & Motion Interface - [Cambon, Kaelbling, Erdem, 

Srivastava, Garrett, Dantam] 
■ Application specific, no generic problem description 
■ Multi-Modal Motion Planning - [Siméon, Hauser, Toussaint] 
■ Brute-force hybrid state-space search 

■ No general-purpose, flexible framework for modeling a 
variety of TAMP domains



Our Approach: PDDLStream

■ Extends Planning Domain Definition Language (PDDL) 
■ Modular & domain-independent 

■ Enables the specification of sampling procedures 
■ Can encode domains with infinitely-many actions 

■ Admits generic algorithms that operate using the 
samplers as blackbox inputs 
■ The user only needs to specify the samplers
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PDDLStream Language



2D Pick-and-Place Example
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■ Goal: block A within the red region 
■ Robot and block poses are continuous [x, y] pairs 
■ Block B obstructs the placement of A

Robot Vacuum Gripper

Movable Blocks

Placement Regions



2D Pick-and-Place Solution
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■ Discrete form of one (of infinitely many) solutions 
■ move, pick B, move, place B,                       
move, pick A, move, place A



2D Pick-and-Place Initial & Goal

■ Some constants are numpy arrays 
■ Static initial facts - value is constant over time 
■ (Block, A),  (Block, B),  (Region, red), (Region, grey),            

(Conf, [-7.5 5.]), (Pose, A, [0. 0.]), (Pose, B, [7.5 0.]),        
(Grasp, A, [0. -2.5]), (Grasp, B, [0. -2.5]) 

■ Fluent initial facts - value changes over time 
■ (AtConf, [-7.5  5.]), (HandEmpty),                                      

(AtPose, A, [0. 0.]), (AtPose, B, [7.5 0.]) 

■ Goal formula: 
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(exists (?p) (and (Contained A ?p red)  
      (AtPose A ?p)))



2D Pick-and-Place Actions
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  (:action move 
    :parameters (?q1 ?t ?q2) 
    :precondition (and (Motion ?q1 ?t ?q2)(AtConf ?q1)) 
    :effect (and (AtConf ?q2)(not (AtConf ?q1)))) 
   
  (:action pick 
    :parameters (?b ?p ?g ?q) 
    :precondition (and (Kin ?b ?p ?g ?q) 
                       (AtConf ?q)(AtPose ?b ?p)(HandEmpty)) 
    :effect (and (AtGrasp ?b ?g) 
                 (not (AtPose ?b ?p))(not (HandEmpty))))

■ Typical PDDL action description except that arguments 
are high-dimensional & continuous!  

■ To use the actions, must prove the following static facts: 
(Motion ?q1 ?t ?q2), (Kin ?b ?p ?g ?q) 



Search in Discretized State Space

(AtConf, [-5. 5.])
(AtPose, A, [0. 0.]) 
(AtPose, B, [7.5 0.]) 
(HandEmpty)

(AtConf, [0. 2.5])
(AtPose, A, [0. 0.]) 
(AtPose, B, [7.5 0.]) 
(HandEmpty)

(AtConf, [0. 2.5])
(AtGrasp, A, [0. -2.5]) 
(AtPose, B, [7.5 0.])

(AtConf, [-7.5 5.]) 
(AtPose, A, [0. 0.]) 
(AtPose, B, [7.5 0.])  
(HandEmpty)
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(move, [-7.5 5.], 𝞃1, [0. 2.5])

(move, [-7.5 5.], 𝞃2, [-5. 5.])

(move, [-5. 5.], 𝞃3, [0. 2.5])

(pick, A, [0. 0.], [0. -2.5], [0. 2.5])

Initial 
State

■ Suppose we were given the following additional static facts:  
■ (Motion, [-7.5 5.], 𝞃1, [0. 2.5]), (Motion, [-7.5 5.], 𝞃2, [-5. 5.]),                   

(Motion, [-5. 5.], 𝞃3, [0. 2.5]), (Kin, A, [0. 0.], [0. -2.5], [0. 2.5]), …



■ Values given at start: 
■ 1 initial configuration: (Conf, [-7.5 5.]) 
■ 2 initial poses: (Pose, A, [0. 0.]), (Pose, B, [7.5 0.]) 
■ 2 grasps: (Grasp, A, [0. -2.5]), (Grasp, B, [0. -2.5]) 

■ Planner needs to find: 
■ 1 pose within a region: 
■ 1 collision-free pose: 
■ 4 grasping configurations: 
■ 4 robot trajectories: 

No a Priori Discretization

(Motion ?q1 ?t ?q2)

(Kin ?b ?p ?g ?q) 

(CFree A ?p ? B ?p2) 

(Contain A ?p red) 



Stream: a function to a generator

■ Advantages 
■ Programmatic implementation 
■ Compositional 
■ Supports infinite sequences 
■ Stream - function from an input object tuple (x1, x2, x3) 

to a (potentially infinite) sequence of output object 
tuples [(y1, y2), (y’1, y’2), …]
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stream

Input x1

Input x2 Outputs [(y1, y2), (y’1, y’2), …]

Input x3

def stream(x1, x2, x3): 
    i = 0 
    while True: 
        y1 = i*(x1 + x2) 
        y2 = i*(x2 + x3) 
        yield (y1, y2) 
        i += 1



Stream Certified Facts

■ Objects alone aren’t helpful: what do they represent? 
■ Communicate semantics using predicates! 

■ Augment stream specification with: 
■ Domain facts - static facts declaring legal inputs 
■ e.g. only configurations can be motion inputs 

■ Certified facts - static facts that all outputs satisfy 
with their corresponding inputs 
■ e.g. poses sampled from a region are within it
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Sampling Contained Poses
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  (:stream sample-region 
    :inputs (?b ?r) 
    :domain (and (Block ?b) (Region ?r)) 
    :outputs (?p) 
    :certified (and (Pose ?b ?p) (Contain ?b ?p ?r)))

def sample_region(b, r): 
  x_min, x_max = REGIONS[r] 
  w = BLOCKS[b].width 
  while True: 
      x = random.uniform(x_min + w/2,  
                         x_max - w/2) 
      p = np.array([x, 0.]) 
      yield (p,)

sample-region
Block b

Region r
Pose [(p), (p’), (p”), …]



Sampling IK Solutions
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  (:stream sample-ik 
    :inputs (?b ?p ?g) 
    :domain (and (Pose ?b ?p) (Grasp ?b ?g)) 
    :outputs (?q) 
    :certified (and (Conf ?q) (Kin ?b ?p ?g ?q)))

■ Inverse kinematics (IK) to produce robot grasping 
configuration 

■ Trivial in 2D, non-trial in general (e.g. 7 DOF arm)

sample-ik

Block b

Pose p Conf [(q’), (q”)]

Grasp g



PDDLStream = PDDL + Streams

■ Domain dynamics (domain.pddl): declares actions 
■ Stream properties (stream.pddl) 
■ Declares stream inputs, outputs, and certified facts 
■ Problem and stream implementation (problem.py) 
■ Initial state, Python constants, & goal formula 
■ Stream implementation using Python generators
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PDDLStream 
Planner

Domain

Streams

Init & Goal

Plan

Supporting 
Facts

User provides



PDDLStream Algorithms



PDDLStream Algorithms

■ PDDLStream planners decide which streams to use 

■ Our algorithms alternate between searching & 
sampling: 
1. Search a finite PDDL problem for plan 
2. Modify the PDDL problem (depending on the plan) 

■ Search implemented using any off-the-shelf classical 
planner (e.g. FastDownward)



Optimistic Stream Outputs

■ Many TAMP streams are exceptionally expensive 
■ Inverse kinematics, motion planning, collision checking 
■ Only query streams that are identified as useful 
■ Plan with optimistic hypothetical outputs 
■ Inductively create unique first-class placeholder object 

for each stream instance output (has # as its prefix)
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Optimistic evaluations: 
1. s-region:(block-A, red-region)->(#p0) 
2. s-ik:(block-A, [0. 0.], [0. -2.5])->(#q0), 
3. s-ik:(block-A, #p0, [0. -2.5]) ->(#q2)



Binding (& ≈Focused) Algorithm

■ Lazily plan using optimistic outputs before real outputs 
■ Recover set of streams used by the optimistic plan
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Done!

Start

Optimistic 
plan

Real plan
New facts

Disabled 
streams

Optimistic 
facts

FastDownward 
Search 

Sample 
Streams

Optimistic 
Streams

■ Repeat: 
1. Construct active 

optimistic objects 
2. Search with real & 

optimistic objects 
3. If only real objects 

used, return plan 
4. Sample used streams 
5. Disable used streams



Problems with Tight Constraints

■ Example: pack 5 blue blocks into a small green region 
■ Optimistic plan may be feasible but require a 

substantial amount of rejection sampling 
■ Binding algorithm would require many iterations
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Adaptive Algorithm

■ Balance computation time spent searching and sampling 
■ Adapts online to overhead of each phase per problem 

■ Gradually instantiate with new objects to keep finite PDDL 
problems small & tractable
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Done!

Start

NoYesOptimistic 
plan

Search for New 
Optimistic Plan

Sample Existing 
Optimistic Plan

Search ≤ 
Sample Time

■ Anytime mode to locally optimizes 
for low-cost plans



Experiments: Coverage & Runtime

■ Scale the number of blue 
blocks while the green 
region maintains its size 

■ Adaptive solves the most 
problems (and most quickly) 
for most difficult (5 blocks)
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Rovers Domain & Takeaways

■ PDDLStream: generic extension of PDDL that supports 
sampling procedures as blackbox streams 

■ Optimistic planning intelligently queries only a small 
number of samplers 

■ Adaptively balancing searching & sampling performs best


