
Caelan R. Garrett, Tomás Lozano-Pérez,
and Leslie P. Kaelbling
ICAPS 2020
Contact: caelan@csail.mit.edu
Videos: https://tinyurl.com/pddlstream
Code: https://github.com/caelan/pddlstream

PDDLStream: Integrating Symbolic Planners and
Blackbox Samplers via Optimistic Adaptive Planning

mailto:caelan@csail.mit.edu
https://tinyurl.com/pddlstream
https://github.com/caelan/pddlstream

Task and Motion Planning (TAMP)

■ Robot plans high-level actions
& low-level controls

■ Plan in a high-dimensional
and hybrid space

■ Continuous/discrete variables:
■ Robot configuration, object

poses, is-on, is-in-hand, …
■ Actions: move, pick, place,

push, pour, detect, cook, …

2

Manipulation: “Cooking”
3

Planner Produces Continuous Values
4

■ Continuous action parameter values must satisfy
dimensionality-reducing constraints

■ Geometric constraints limit high-level strategies
■ Kinematics, reachability, joint limits, collisions,

graspability, visibility, stability

Prior TAMP Work

■ Numeric Planning & Semantic Attachments - [Fox,
Dornhege, Gregory, Cashmore]
■ Assumes a finite action space
■ Task & Motion Interface - [Cambon, Kaelbling, Erdem,

Srivastava, Garrett, Dantam]
■ Application specific, no generic problem description
■ Multi-Modal Motion Planning - [Siméon, Hauser, Toussaint]
■ Brute-force hybrid state-space search

■ No general-purpose, flexible framework for modeling a
variety of TAMP domains

Our Approach: PDDLStream

■ Extends Planning Domain Definition Language (PDDL)
■ Modular & domain-independent

■ Enables the specification of sampling procedures
■ Can encode domains with infinitely-many actions

■ Admits generic algorithms that operate using the
samplers as blackbox inputs
■ The user only needs to specify the samplers

6

PDDLStream Language

2D Pick-and-Place Example
8

■ Goal: block A within the red region
■ Robot and block poses are continuous [x, y] pairs
■ Block B obstructs the placement of A

Robot Vacuum Gripper

Movable Blocks

Placement Regions

2D Pick-and-Place Solution
9

■ Discrete form of one (of infinitely many) solutions
■ move, pick B, move, place B,
move, pick A, move, place A

2D Pick-and-Place Initial & Goal

■ Some constants are numpy arrays
■ Static initial facts - value is constant over time
■ (Block, A), (Block, B), (Region, red), (Region, grey),

(Conf, [-7.5 5.]), (Pose, A, [0. 0.]), (Pose, B, [7.5 0.]),
(Grasp, A, [0. -2.5]), (Grasp, B, [0. -2.5])

■ Fluent initial facts - value changes over time
■ (AtConf, [-7.5 5.]), (HandEmpty),

(AtPose, A, [0. 0.]), (AtPose, B, [7.5 0.])

■ Goal formula:

10

(exists (?p) (and (Contained A ?p red)
 (AtPose A ?p)))

2D Pick-and-Place Actions
11

 (:action move
 :parameters (?q1 ?t ?q2)
 :precondition (and (Motion ?q1 ?t ?q2)(AtConf ?q1))
 :effect (and (AtConf ?q2)(not (AtConf ?q1))))

 (:action pick
 :parameters (?b ?p ?g ?q)
 :precondition (and (Kin ?b ?p ?g ?q)
 (AtConf ?q)(AtPose ?b ?p)(HandEmpty))
 :effect (and (AtGrasp ?b ?g)
 (not (AtPose ?b ?p))(not (HandEmpty))))

■ Typical PDDL action description except that arguments
are high-dimensional & continuous!

■ To use the actions, must prove the following static facts:
(Motion ?q1 ?t ?q2), (Kin ?b ?p ?g ?q)

Search in Discretized State Space

(AtConf, [-5. 5.])
(AtPose, A, [0. 0.])
(AtPose, B, [7.5 0.])
(HandEmpty)

(AtConf, [0. 2.5])
(AtPose, A, [0. 0.])
(AtPose, B, [7.5 0.])
(HandEmpty)

(AtConf, [0. 2.5])
(AtGrasp, A, [0. -2.5])
(AtPose, B, [7.5 0.])

(AtConf, [-7.5 5.])
(AtPose, A, [0. 0.])
(AtPose, B, [7.5 0.])
(HandEmpty)

12

(move, [-7.5 5.], 𝞃1, [0. 2.5])

(move, [-7.5 5.], 𝞃2, [-5. 5.])

(move, [-5. 5.], 𝞃3, [0. 2.5])

(pick, A, [0. 0.], [0. -2.5], [0. 2.5])

Initial
State

■ Suppose we were given the following additional static facts:
■ (Motion, [-7.5 5.], 𝞃1, [0. 2.5]), (Motion, [-7.5 5.], 𝞃2, [-5. 5.]),

(Motion, [-5. 5.], 𝞃3, [0. 2.5]), (Kin, A, [0. 0.], [0. -2.5], [0. 2.5]), …

■ Values given at start:
■ 1 initial configuration: (Conf, [-7.5 5.])
■ 2 initial poses: (Pose, A, [0. 0.]), (Pose, B, [7.5 0.])
■ 2 grasps: (Grasp, A, [0. -2.5]), (Grasp, B, [0. -2.5])

■ Planner needs to find:
■ 1 pose within a region:
■ 1 collision-free pose:
■ 4 grasping configurations:
■ 4 robot trajectories:

No a Priori Discretization

(Motion ?q1 ?t ?q2)

(Kin ?b ?p ?g ?q)

(CFree A ?p ? B ?p2)

(Contain A ?p red)

Stream: a function to a generator

■ Advantages
■ Programmatic implementation
■ Compositional
■ Supports infinite sequences
■ Stream - function from an input object tuple (x1, x2, x3)

to a (potentially infinite) sequence of output object
tuples [(y1, y2), (y’1, y’2), …]

14

stream

Input x1

Input x2 Outputs [(y1, y2), (y’1, y’2), …]

Input x3

def stream(x1, x2, x3):
 i = 0
 while True:
 y1 = i*(x1 + x2)
 y2 = i*(x2 + x3)
 yield (y1, y2)
 i += 1

Stream Certified Facts

■ Objects alone aren’t helpful: what do they represent?
■ Communicate semantics using predicates!

■ Augment stream specification with:
■ Domain facts - static facts declaring legal inputs
■ e.g. only configurations can be motion inputs

■ Certified facts - static facts that all outputs satisfy
with their corresponding inputs
■ e.g. poses sampled from a region are within it

15

Sampling Contained Poses
16

 (:stream sample-region
 :inputs (?b ?r)
 :domain (and (Block ?b) (Region ?r))
 :outputs (?p)
 :certified (and (Pose ?b ?p) (Contain ?b ?p ?r)))

def sample_region(b, r):
 x_min, x_max = REGIONS[r]
 w = BLOCKS[b].width
 while True:
 x = random.uniform(x_min + w/2,
 x_max - w/2)
 p = np.array([x, 0.])
 yield (p,)

sample-region
Block b

Region r
Pose [(p), (p’), (p”), …]

Sampling IK Solutions
17

 (:stream sample-ik
 :inputs (?b ?p ?g)
 :domain (and (Pose ?b ?p) (Grasp ?b ?g))
 :outputs (?q)
 :certified (and (Conf ?q) (Kin ?b ?p ?g ?q)))

■ Inverse kinematics (IK) to produce robot grasping
configuration

■ Trivial in 2D, non-trial in general (e.g. 7 DOF arm)

sample-ik

Block b

Pose p Conf [(q’), (q”)]

Grasp g

PDDLStream = PDDL + Streams

■ Domain dynamics (domain.pddl): declares actions
■ Stream properties (stream.pddl)
■ Declares stream inputs, outputs, and certified facts
■ Problem and stream implementation (problem.py)
■ Initial state, Python constants, & goal formula
■ Stream implementation using Python generators

18

PDDLStream
Planner

Domain

Streams

Init & Goal

Plan

Supporting
Facts

User provides

PDDLStream Algorithms

PDDLStream Algorithms

■ PDDLStream planners decide which streams to use

■ Our algorithms alternate between searching &
sampling:
1. Search a finite PDDL problem for plan
2. Modify the PDDL problem (depending on the plan)

■ Search implemented using any off-the-shelf classical
planner (e.g. FastDownward)

Optimistic Stream Outputs

■ Many TAMP streams are exceptionally expensive
■ Inverse kinematics, motion planning, collision checking
■ Only query streams that are identified as useful
■ Plan with optimistic hypothetical outputs
■ Inductively create unique first-class placeholder object

for each stream instance output (has # as its prefix)

21

Optimistic evaluations:
1. s-region:(block-A, red-region)->(#p0)
2. s-ik:(block-A, [0. 0.], [0. -2.5])->(#q0),
3. s-ik:(block-A, #p0, [0. -2.5]) ->(#q2)

Binding (& ≈Focused) Algorithm

■ Lazily plan using optimistic outputs before real outputs
■ Recover set of streams used by the optimistic plan

22

Done!

Start

Optimistic
plan

Real plan
New facts

Disabled
streams

Optimistic
facts

FastDownward
Search

Sample
Streams

Optimistic
Streams

■ Repeat:
1. Construct active

optimistic objects
2. Search with real &

optimistic objects
3. If only real objects

used, return plan
4. Sample used streams
5. Disable used streams

Problems with Tight Constraints

■ Example: pack 5 blue blocks into a small green region
■ Optimistic plan may be feasible but require a

substantial amount of rejection sampling
■ Binding algorithm would require many iterations

23

Adaptive Algorithm

■ Balance computation time spent searching and sampling
■ Adapts online to overhead of each phase per problem

■ Gradually instantiate with new objects to keep finite PDDL
problems small & tractable

24

Done!

Start

NoYesOptimistic
plan

Search for New
Optimistic Plan

Sample Existing
Optimistic Plan

Search ≤
Sample Time

■ Anytime mode to locally optimizes
for low-cost plans

Experiments: Coverage & Runtime

■ Scale the number of blue
blocks while the green
region maintains its size

■ Adaptive solves the most
problems (and most quickly)
for most difficult (5 blocks)

25

Rovers Domain & Takeaways

■ PDDLStream: generic extension of PDDL that supports
sampling procedures as blackbox streams

■ Optimistic planning intelligently queries only a small
number of samplers

■ Adaptively balancing searching & sampling performs best

