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Setting

I Satisficing classical planning

I Forward search guided by an existing heuristic function (FF)



Learning search policies – problem statement

I Construct a planner which can adapt its search approach
while solving a planning problem.

I Learn search policies tailored to specific problem distributions
and performance objectives using RL.



Previous work – the discrete case1

while not solved do

choose one of the available search routines

keep applying it to the open list for a fixed time tr

end while

1Pawel Gomoluch, Dalal Alrajeh, and Alessandra Russo. “Learning Classical
Planning Strategies with Policy Gradient”. In: Proceedings of the
Twenty-Ninth International Conference on Automated Planning and
Scheduling, ICAPS 2019. 2019.



The discrete case – limitations

I The framework comes with a number of fixed parameters,
e.g., ε, tr .

I The learner can choose between the routines but it can’t
combine them, e.g., perform ε-greedy local search.



Solution – a continuous action space

Construct a parametrized search routine combining elements of
various search techniques:

I For specific values of the parameters, the routine can assume
any of the techniques on its own.

I For intermediate values of the parameters, it combines
elements of various techniques.



Parametrized search routine – outline

I Interleave between nL global and nG local expansions.

I Optionally, randomize the order of node expansion or follow
them with a number of random walks.



Search parameters – summary

Overall, the search parameters include:

I ε – the probability of selecting a random node from the open
list;

I S – the number of expansions without progress necessary to
trigger a random walk;

I R – the number of random walks following a single node
expansion;

I L – the length of a random walk;

I C – the number of node expansions in the global-local cycle;

I c – the proportion of local search in the global-local cycle.



Representation of the planner’s state

To capture information about the state of the search, we consider
features such as, among others:

I the heuristic value of the initial state h(s0);

I the lowest heuristic value encountered within the search hmin;

I the time elapsed since the search started;

I the number of node expansions performed since the last
change in the value of hmin.



Two variants of the approach

I A feed-forward neural network mapping the search statistics
to values of the search parameters.

I A stateless approach, in which we optimize the values of the
search parameters directly (with no dependency on the search
statistics).



Training – the Cross-Entropy Method2

The general idea behind Evolution Strategies is to introduce a
distribution over possible solutions (sets of parameters).

At each iteration, the distribution is updated to maximize the
likelihood of best-performing solutions.

2Shie Mannor, Reuven Rubinstein, and Yohai Gat. “The Cross Entropy
Method for Fast Policy Search”. In: ICML’03 Proceedings of the Twentieth
International Conference on International Conference on Machine Learning.
2003.



CEM training – overview

initialize µ and Σ
for i = 1...u do

p1...pr ← P . sample r problems
θ1...θn ← N (µ,Σ) . sample n policies
for j = 1...n do

for k = 1...r do
run policy θj on pk , record plan cost cj ,k

end for
end for
G1...Gn ← compute IPC score for θ1...θn
sort θ1...θn by scores G1...Gn (highest first)
µ← (1− α)µ+ α ·mean(θ1...θm)
Σ← (1− α)Σ + α · covariance(θ1...θm)

end for
return µ
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Evaluation

I Five planning of the IPC learning track: Transport, Parking,
Elevators, No-mystery and Floortile.

I Problem distributions matching the problem sets of IPC 2011
satisficing track.

I A timeout of 3 minutes.



Results – IPC scores

E F N P T Sum

GBFS 14.67 2.24 8.18 9.24 2.6 36.93
ε-greedy 13.07 2.64 8.93 7.44 2.7 34.78
RW 14.63 0.47 6.78 7.95 3.6 33.42
Local 15.97 1.91 7.15 11.85 4.48 41.36
Mixed 11.6 1.25 6.69 6.14 2.9 28.58
Opt 14.64 3.5 8.86 13.81 5.39 46.18
NSP 16.37 3.28 9.04 12.93 5.12 46.74

IPC scores for randomly generated test problems (average over 10
sets). Elevators (E), Floortile (F), No-mystery (N), Parking (P)
and Transport (T).



Conclusion and future work

Contributions:

I Parametrized search routine combining elements of various
search techniques.

I Search policy model, mapping the state of the search to
values of the routine’s parameters.

I Evolutionary training scheme based on CEM.

Directions for future work:

I Extending the search routine with multiple open lists and
novelty-based search.

I More complex representation of the planner’s state.


