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Setting

> Satisficing classical planning

» Forward search guided by an existing heuristic function (FF)



Learning search policies — problem statement

» Construct a planner which can adapt its search approach
while solving a planning problem.

» Learn search policies tailored to specific problem distributions
and performance objectives using RL.



Previous work — the discrete casel

while not solved do
choose one of the available search routines
keep applying it to the open list for a fixed time t,

end while

!Pawel Gomoluch, Dalal Alrajeh, and Alessandra Russo. “Learning Classical
Planning Strategies with Policy Gradient”. In: Proceedings of the
Twenty-Ninth International Conference on Automated Planning and
Scheduling, ICAPS 2019. 2019.



The discrete case — limitations

» The framework comes with a number of fixed parameters,
e.g., € tp.

P The learner can choose between the routines but it can't
combine them, e.g., perform e-greedy local search.



Solution — a continuous action space

Construct a parametrized search routine combining elements of
various search techniques:

» For specific values of the parameters, the routine can assume
any of the techniques on its own.

» For intermediate values of the parameters, it combines
elements of various techniques.



Parametrized search routine — outline

> Interleave between n; global and n¢ local expansions.

» Optionally, randomize the order of node expansion or follow
them with a number of random walks.



Search parameters — summary

Overall, the search parameters include:

>

>

v

€ — the probability of selecting a random node from the open
list;

S — the number of expansions without progress necessary to
trigger a random walk;

R — the number of random walks following a single node
expansion;

L — the length of a random walk;
C — the number of node expansions in the global-local cycle;

¢ — the proportion of local search in the global-local cycle.



Representation of the planner’s state

To capture information about the state of the search, we consider
features such as, among others:

> the heuristic value of the initial state h(sp);
» the lowest heuristic value encountered within the search hyin;
> the time elapsed since the search started;

» the number of node expansions performed since the last
change in the value of hyin.



Two variants of the approach

» A feed-forward neural network mapping the search statistics
to values of the search parameters.

> A stateless approach, in which we optimize the values of the
search parameters directly (with no dependency on the search
statistics).



Training — the Cross-Entropy Method?

The general idea behind Evolution Strategies is to introduce a
distribution over possible solutions (sets of parameters).

At each iteration, the distribution is updated to maximize the
likelihood of best-performing solutions.

2Shie Mannor, Reuven Rubinstein, and Yohai Gat. “The Cross Entropy
Method for Fast Policy Search”. In: /CML'03 Proceedings of the Twentieth
International Conference on International Conference on Machine Learning.
2003.



CEM training — overview

initialize p and X
fori=1...udo

pi-..pr < P > sample r problems
01...00 < N (1, X) > sample n policies
for j=1...ndo
for k=1...r do
run policy 6; on py, record plan cost ¢; «
end for
end for

Gi...G, < compute IPC score for 6;...0,
sort 61...0, by scores Gi...G, (highest first)
w4 (1 —a)u+ a-mean(6y...0m,)
Y + (1 — )X + « - covariance(f;...0m)
end for
return u
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CEM training — overview

initialize p and X
fori=1...udo

pi-..pr < P > sample r problems
01...00 < N (1, X) > sample n policies
for j=1...ndo
for k=1...r do
run policy 6; on py, record plan cost ¢; «
end for
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Evaluation

» Five planning of the IPC learning track: Transport, Parking,
Elevators, No-mystery and Floortile.

» Problem distributions matching the problem sets of IPC 2011
satisficing track.

> A timeout of 3 minutes.



Results — IPC scores

E F N P T Sum

GBFS 14.67 224 8.18 9.24 2.6 36.93
e-greedy | 13.07 2.64 8.93 7.44 2.7 34.78
RW 1463 047 678 7.95 3.6 33.42
Local 1597 191 7.15 1185 4.48 | 41.36
Mixed 11.6 1.25 6.69 6.14 2.9 28.58
Opt 1464 3.5 8386 13.81 5.39 | 46.18
NSP 16.37 328 9.04 1293 5.12 | 46.74

IPC scores for randomly generated test problems (average over 10
sets). Elevators (E), Floortile (F), No-mystery (N), Parking (P)
and Transport (T).



Conclusion and future work

Contributions:
» Parametrized search routine combining elements of various
search techniques.
» Search policy model, mapping the state of the search to
values of the routine's parameters.

» Evolutionary training scheme based on CEM.

Directions for future work:
> Extending the search routine with multiple open lists and
novelty-based search.
» More complex representation of the planner's state.



