Learning Neural Search Policies for Classical Planning

Paweł Gomoluch¹, Dalal Alrajeh¹, Alessandra Russo¹, Antonio Bucchiarone²

¹Imperial College London, ²Fondazione Bruno Kessler

ICAPS, October 2020

Setting

- Satisficing classical planning
- ▶ Forward search guided by an existing heuristic function (FF)

Learning search policies - problem statement

- Construct a planner which can adapt its search approach while solving a planning problem.
- Learn search policies tailored to specific problem distributions and performance objectives using RL.

Previous work – the discrete case¹

while not solved do

choose one of the available search routines

keep applying it to the open list for a fixed time t_r end while

¹Pawel Gomoluch, Dalal Alrajeh, and Alessandra Russo. "Learning Classical Planning Strategies with Policy Gradient". In: *Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling, ICAPS 2019.* 2019.

The discrete case – limitations

- The framework comes with a number of fixed parameters, e.g., ε, t_r.
- The learner can choose between the routines but it can't combine them, e.g., perform *ϵ*-greedy local search.

Construct a parametrized search routine combining elements of various search techniques:

- For specific values of the parameters, the routine can assume any of the techniques on its own.
- For intermediate values of the parameters, it combines elements of various techniques.

Parametrized search routine - outline

- Interleave between n_L global and n_G local expansions.
- Optionally, randomize the order of node expansion or follow them with a number of random walks.

Search parameters – summary

Overall, the search parameters include:

- ► e the probability of selecting a random node from the open list;
- S the number of expansions without progress necessary to trigger a random walk;
- *R* the number of random walks following a single node expansion;
- ► L the length of a random walk;
- C the number of node expansions in the global-local cycle;
- c the proportion of local search in the global-local cycle.

To capture information about the state of the search, we consider features such as, among others:

- the heuristic value of the initial state $h(s_0)$;
- the lowest heuristic value encountered within the search h_{\min} ;
- the time elapsed since the search started;
- the number of node expansions performed since the last change in the value of h_{min}.

Two variants of the approach

- A feed-forward neural network mapping the search statistics to values of the search parameters.
- A stateless approach, in which we optimize the values of the search parameters directly (with no dependency on the search statistics).

The general idea behind *Evolution Strategies* is to introduce a distribution over possible solutions (sets of parameters).

At each iteration, the distribution is updated to maximize the likelihood of best-performing solutions.

²Shie Mannor, Reuven Rubinstein, and Yohai Gat. "The Cross Entropy Method for Fast Policy Search". In: *ICML'03 Proceedings of the Twentieth International Conference on International Conference on Machine Learning*. 2003.

initialize μ and Σ for $i = 1 \dots \mu$ do $p_1...p_r \leftarrow \mathcal{P}$ \triangleright sample *r* problems $\theta_1 \dots \theta_n \leftarrow \mathcal{N}(\mu, \Sigma)$ \triangleright sample *n* policies for i = 1...n do for $k = 1 \dots r$ do run policy θ_i on p_k , record plan cost $c_{i,k}$ end for end for $G_1...G_n \leftarrow \text{compute IPC score for } \theta_1...\theta_n$ sort $\theta_1 \dots \theta_n$ by scores $G_1 \dots G_n$ (highest first) $\mu \leftarrow (1 - \alpha)\mu + \alpha \cdot \mathsf{mean}(\theta_1 \dots \theta_m)$ $\Sigma \leftarrow (1 - \alpha)\Sigma + \alpha \cdot \text{covariance}(\theta_1 \dots \theta_m)$ end for

initialize μ and Σ for $i = 1 \dots \mu$ do $p_1...p_r \leftarrow \mathcal{P}$ \triangleright sample *r* problems $\theta_1 \dots \theta_n \leftarrow \mathcal{N}(\mu, \Sigma)$ \triangleright sample *n* policies for i = 1...n do for $k = 1 \dots r$ do run policy θ_i on p_k , record plan cost $c_{i,k}$ end for end for $G_1...G_n \leftarrow \text{compute IPC score for } \theta_1...\theta_n$ sort $\theta_1 \dots \theta_n$ by scores $G_1 \dots G_n$ (highest first) $\mu \leftarrow (1 - \alpha)\mu + \alpha \cdot \mathsf{mean}(\theta_1 \dots \theta_m)$ $\Sigma \leftarrow (1 - \alpha)\Sigma + \alpha \cdot \text{covariance}(\theta_1 \dots \theta_m)$ end for

initialize μ and Σ for $i = 1 \dots \mu$ do $p_1...p_r \leftarrow \mathcal{P}$ \triangleright sample *r* problems $\theta_1 \dots \theta_n \leftarrow \mathcal{N}(\mu, \Sigma)$ \triangleright sample *n* policies for i = 1...n do for $k = 1 \dots r$ do run policy θ_i on p_k , record plan cost $c_{i,k}$ end for end for $G_1...G_n \leftarrow \text{compute IPC score for } \theta_1...\theta_n$ sort $\theta_1 \dots \theta_n$ by scores $G_1 \dots G_n$ (highest first) $\mu \leftarrow (1 - \alpha)\mu + \alpha \cdot \mathsf{mean}(\theta_1 \dots \theta_m)$ $\Sigma \leftarrow (1 - \alpha)\Sigma + \alpha \cdot \text{covariance}(\theta_1 \dots \theta_m)$ end for

initialize μ and Σ for $i = 1 \dots \mu$ do $p_1...p_r \leftarrow \mathcal{P}$ \triangleright sample *r* problems $\theta_1 \dots \theta_n \leftarrow \mathcal{N}(\mu, \Sigma)$ \triangleright sample *n* policies for i = 1...n do for $k = 1 \dots r$ do run policy θ_i on p_k , record plan cost $c_{i,k}$ end for end for $G_1...G_n \leftarrow \text{compute IPC score for } \theta_1...\theta_n$ sort $\theta_1 \dots \theta_n$ by scores $G_1 \dots G_n$ (highest first) $\mu \leftarrow (1 - \alpha)\mu + \alpha \cdot \mathsf{mean}(\theta_1 \dots \theta_m)$ $\Sigma \leftarrow (1 - \alpha)\Sigma + \alpha \cdot \text{covariance}(\theta_1 \dots \theta_m)$

end for

initialize μ and Σ for $i = 1 \dots \mu$ do $p_1...p_r \leftarrow \mathcal{P}$ \triangleright sample *r* problems $\theta_1 \dots \theta_n \leftarrow \mathcal{N}(\mu, \Sigma)$ \triangleright sample *n* policies for i = 1...n do for $k = 1 \dots r$ do run policy θ_i on p_k , record plan cost $c_{i,k}$ end for end for $G_1...G_n \leftarrow \text{compute IPC score for } \theta_1...\theta_n$ sort $\theta_1 \dots \theta_n$ by scores $G_1 \dots G_n$ (highest first) $\mu \leftarrow (1 - \alpha)\mu + \alpha \cdot \mathsf{mean}(\theta_1 \dots \theta_m)$ $\Sigma \leftarrow (1 - \alpha)\Sigma + \alpha \cdot \text{covariance}(\theta_1 \dots \theta_m)$ end for

initialize μ and Σ for $i = 1 \dots \mu$ do $p_1...p_r \leftarrow \mathcal{P}$ \triangleright sample *r* problems $\theta_1 \dots \theta_n \leftarrow \mathcal{N}(\mu, \Sigma)$ \triangleright sample *n* policies for i = 1...n do for $k = 1 \dots r$ do run policy θ_i on p_k , record plan cost $c_{i,k}$ end for end for $G_1...G_n \leftarrow \text{compute IPC score for } \theta_1...\theta_n$ sort $\theta_1 \dots \theta_n$ by scores $G_1 \dots G_n$ (highest first) $\mu \leftarrow (1 - \alpha)\mu + \alpha \cdot \mathsf{mean}(\theta_1 \dots \theta_m)$ $\Sigma \leftarrow (1 - \alpha)\Sigma + \alpha \cdot \text{covariance}(\theta_1 \dots \theta_m)$ end for

initialize μ and Σ for $i = 1 \dots \mu$ do $p_1...p_r \leftarrow \mathcal{P}$ \triangleright sample *r* problems $\theta_1 \dots \theta_n \leftarrow \mathcal{N}(\mu, \Sigma)$ \triangleright sample *n* policies for i = 1...n do for $k = 1 \dots r$ do run policy θ_i on p_k , record plan cost $c_{i,k}$ end for end for $G_1...G_n \leftarrow \text{compute IPC score for } \theta_1...\theta_n$ sort $\theta_1 \dots \theta_n$ by scores $G_1 \dots G_n$ (highest first) $\mu \leftarrow (1 - \alpha)\mu + \alpha \cdot \mathsf{mean}(\theta_1 \dots \theta_m)$ $\Sigma \leftarrow (1 - \alpha)\Sigma + \alpha \cdot \text{covariance}(\theta_1 \dots \theta_m)$ end for

Evaluation

- Five planning of the IPC learning track: Transport, Parking, Elevators, No-mystery and Floortile.
- Problem distributions matching the problem sets of IPC 2011 satisficing track.
- A timeout of 3 minutes.

Results - IPC scores

	E	F	Ν	Р	Т	Sum
GBFS	14.67	2.24	8.18	9.24	2.6	36.93
ϵ -greedy	13.07	2.64	8.93	7.44	2.7	34.78
RW	14.63	0.47	6.78	7.95	3.6	33.42
Local	15.97	1.91	7.15	11.85	4.48	41.36
Mixed	11.6	1.25	6.69	6.14	2.9	28.58
Opt	14.64	3.5	8.86	13.81	5.39	46.18
NSP	16.37	3.28	9.04	12.93	5.12	46.74

IPC scores for randomly generated test problems (average over 10 sets). *Elevators* (E), *Floortile* (F), *No-mystery* (N), *Parking* (P) and *Transport* (T).

Conclusion and future work

Contributions:

- Parametrized search routine combining elements of various search techniques.
- Search policy model, mapping the state of the search to values of the routine's parameters.
- Evolutionary training scheme based on CEM.

Directions for future work:

- Extending the search routine with multiple open lists and novelty-based search.
- More complex representation of the planner's state.