EFP 2.0: A MULTI-AGENT EPISTEMIC SOLVER WITH MULTIPLE E-STATE REPRESENTATIONS

30th International Conference on Automated Planning and Scheduling

Francesco Fabiano, Alessandro Burigana, Agostino Dovier and Enrico Pontelli

University of Udine & New Mexico State University

October 26–31, 2020
Overview

1. Multi-Agent Epistemic Planning

2. A New Epistemic State Representation

3. Contribution

4. Conclusions & Future Works
Chapter 1

Multi-Agent Epistemic Planning
Introduction

Epistemic Reasoning

Reasoning not only about agents’ perception of the world but also about agents’ knowledge and/or beliefs of her and others’ beliefs.
Multi-Agent Epistemic Planning

Introduction

Epistemic Reasoning
Reasoning not only about agents’ perception of the world but also about agents’ knowledge and/or beliefs of her and others’ beliefs.

Multi-agent Epistemic Planning Problem [BA11]
Finding plans where the goals can refer to:
- the state of the world
- the knowledge and/or the beliefs of the agents
Chapter 2

A New Epistemic State Representation
A New Epistemic State Representation

Possibilities Overview

- Introduced by Gerbrandy and Groeneveld [GG97]
- Used to represent multi-agent information change
- Based on *non-well-founded sets*
- Corresponds with a class of *bisimilar Kripke structures* [Ger99]

A possibility

<table>
<thead>
<tr>
<th>A possibility</th>
<th>Its system of equation</th>
<th>Corresponding K-Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>({A})</td>
<td></td>
</tr>
<tr>
<td>({A})</td>
<td>(w(p) = 1)</td>
<td></td>
</tr>
<tr>
<td>({B})</td>
<td>(v(p) = 1)</td>
<td></td>
</tr>
<tr>
<td>(u(p) = 0)</td>
<td>(w(A) = {v})</td>
<td></td>
</tr>
<tr>
<td>(v(A) = {v})</td>
<td>(w(B) = {\emptyset})</td>
<td></td>
</tr>
<tr>
<td>(u(A) = {\emptyset})</td>
<td>(v(B) = {u})</td>
<td></td>
</tr>
<tr>
<td>({B})</td>
<td>(u(B) = {\emptyset})</td>
<td></td>
</tr>
<tr>
<td>p,q</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Possibility [GG97]

Let \mathcal{AG} be a set of agents and \mathcal{F} a set of propositional variables:

- A possibility u is a function that assigns to each propositional variable $\ell \in \mathcal{F}$ a truth value $u(\ell) \in \{0, 1\}$ and to each agent $ag \in \mathcal{AG}$ a set of possibilities $u(ag) = \sigma$ (information state).

Intuitively:

- The possibility u is a possible interpretation of the world and of the agents’ beliefs
- $u(\ell)$ specifies the truth value of the literal ℓ
- $u(ag)$ is the set of all the interpretations the agent ag considers possible in u
A New Epistemic State Representation

The action language mA^o

- Introduced in [Fab+19] as modification of mA^* [Bar+15]
A New Epistemic State Representation

The action language mA^o

- Introduced in [Fab+19] as modification of mA^* [Bar+15]

- Able to comprehensively reason on:
 - unlimited *nested belief*/knowledge; and
 - *common belief*/knowledge

Models three types of actions:
- **ontic**: modifies the world;
- **sensing**: refines the knowledge;
- **announcement**: shares information with others.

Agents with degrees of awareness w.r.t. actions execution
- Fully observant
- Partial observant
- Oblivious
A New Epistemic State Representation

The action language mA^o

• Introduced in [Fab+19] as modification of mA^* [Bar+15]

• Able to comprehensively reason on:
 ◦ unlimited nested belief/knowledge; and
 ◦ common belief/knowledge

• Models three types of actions:
 ◦ ontic: modifies the world;
 ◦ sensing: refine the knowledge; and
 ◦ announcement: shares information with others.
A New Epistemic State Representation

The action language mA^0

- Introduced in [Fab+19] as modification of mA^* [Bar+15]

- Able to comprehensively reason on:
 - unlimited *nested belief*/knowledge; and
 - *common belief*/knowledge

- Models three types of actions:
 - *ontic*: modifies the world;
 - *sensing*: refine the knowledge; and
 - *announcement*: shares information with others.

- Agents with degrees of awareness w.r.t. actions execution
 - **Fully observant**
 - **Partial observant**
 - **Oblivious**
Chapter 3

Contribution
Contribution

mA^ρ updated Semantics

Provided an updated formalization for mA^ρ transition function:

- Redesigned semantics of mA^ρ (w.r.t. [Fab+19])
 - More compact and clean
 - More efficient implementation
Provided an updated formalization for mA^ρ transition function:

- Redesigned semantics of mA^ρ (w.r.t. [Fab+19])
 - More compact and clean
 - More efficient implementation

- Demonstrated that mA^ρ respects fundamental properties of multi-agent epistemic reasoning
Contribution

The Planner EFP 2.0

- Comprehensive Epistemic Forward Planner
Contribution

The Planner EFP 2.0

- Comprehensive Epistemic Forward Planner
- Complete code rework w.r.t. EFP 1.0 [Le+18]
Contribution

The Planner EFP 2.0

- Comprehensive Epistemic Forward Planner
- Complete code rework w.r.t. EFP 1.0 [Le+18]
- *Breadth-first* exploration
Contribution

The Planner EFP 2.0

- Comprehensive Epistemic Forward Planner
- Complete code rework w.r.t. EFP 1.0 [Le+18]
- Breadth-first exploration
- Multiple e-states representation:
 - Kripke structures: follows the semantics of mA^*
 - Possibilities: follows the new semantics of mA^ρ
The Planner EFP 2.0

- Comprehensive Epistemic Forward Planner
- Complete code rework w.r.t. EFP 1.0 [Le+18]
- Breadth-first exploration
- Multiple e-states representation:
 - Kripke structures: follows the semantics of mA^*
 - Possibilities: follows the new semantics of mA^p
- Kripke structures size reduction based on Paige and Tarjan’s algorithm [PT87]
Contribution

The Planner EFP 2.0

• Comprehensive Epistemic Forward Planner
• Complete code rework w.r.t. EFP 1.0 [Le+18]
• Breadth-first exploration
• Multiple e-states representation:
 ◦ Kripke structures: follows the semantics of mA^*
 ◦ Possibilities: follows the new semantics of mA^p
• Kripke structures size reduction based on Paige and Tarjan’s algorithm [PT87]
• Mechanism for already visited e-states verification
Contribution

Experimental Evaluation I

EFP 1.0 = planner of [Le+18]

K-OPT = K-MAL + e-state reduction

P-MAR = EFP 2.0 + possibilities

TO = Time Out (25 minutes)

WP = Wrong Plan

| CB with |AG| = 3, |F| = 8, |A| = 21 |
|---|---|---|---|---|
| L | EFP 1.0 | K-MAL | K-OPT | P-MAR |
| 2 | .003 | .003 | .006 | .001 |
| 3 | .048 | .077 | .097 | .016 |
| 5 | WP | 5.546 | 1.438 | .367 |
| 6 | WP | 108.080 | 14.625 | 2.932 |
| 7 | WP | 317.077 | 38.265 | 6.996 |

| AL with |AG| = 2, |F| = 4, |A| = 6 |
|---|---|---|---|---|
| d | EFP 1.0 | K-MAL | K-OPT | P-MAR |
| 2 | .43 | .32 | .42 | .07 |
| 4 | .96 | .75 | .64 | .11 |
| 6 | 26.20 | 27.85 | 13.51 | 2.44 |
| 8 | TO | TO | 883.87 | 150.92 |
| C | .44 | .32 | .43 | .08 |

Coin in the Box domain. Assembly Line.
Contribution
Experimental Evaluation II

K-MAL = EFP 2.0 + K. structures
K-OPT = K-MAL + e-state reduction
P-MAR = EFP 2.0 + possibilities
-NV = config w/o visited check

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>9</td>
<td>24</td>
<td>2</td>
<td>.09</td>
<td>8.13</td>
<td>.14</td>
<td>9.95</td>
<td>.03</td>
<td>.02</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>4</td>
<td>9.19</td>
<td>75.32</td>
<td>10.20</td>
<td>75.87</td>
<td>1.34</td>
<td>1.25</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>5</td>
<td>94.49</td>
<td>278.93</td>
<td>84.07</td>
<td>230.69</td>
<td>8.67</td>
<td>7.71</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>6</td>
<td>372.64</td>
<td></td>
<td>291.62</td>
<td></td>
<td>27.63</td>
<td>20.26</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>40</td>
<td>2</td>
<td>1.85</td>
<td>1.786</td>
<td>2.33</td>
<td>2.34</td>
<td>.17</td>
<td>.18</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>4</td>
<td>403.11</td>
<td>274.53</td>
<td>205.00</td>
<td>152.07</td>
<td>13.49</td>
<td>7.31</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>5</td>
<td>T0</td>
<td>T0</td>
<td>T0</td>
<td>T0</td>
<td>123.54</td>
<td>36.54</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>6</td>
<td>T0</td>
<td>T0</td>
<td>T0</td>
<td>T0</td>
<td>427.97</td>
<td>108.64</td>
</tr>
</tbody>
</table>

Runtimes for the Grapevine domain. We compare the configurations with and without (-NV) the visited e-states check.
Contribution

Experimental Evaluation III

EFP 1.0 = planner of [Le+18]
P-MAR = EFP 2.0 + possibilities

Figure: Comparison between EFP 1.0 and EFP 2.0 on SC.
Chapter 4

Conclusions & Future Works
Conclusions

EFP 2.0 provided significantly **better results** w.r.t. the previous state-of-the-art

- **Possibilities** as e-state
- **Dynamic programming** paradigm
- **Reduced size** of e-states
- **Complete refactoring** of EFP 1.0:
 - Corrections
 - Optimizations
Conclusions & Future Works

Future Works

- E-state *symbolic representations*
- Concept of *non-consistent belief*
- Formalization of novel concepts such as *trust, lies* and *misconception*
- Consider heuristics as in [Le+18]
Thank You for the attention

