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Introduction

Problem Definition
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m WS = (T, E, V):acontinuous
two-dimensional workspace

m Eachregion t; € T is a triangle, and
assigned a unit weight (or cost) w; > 0.

= Let p and g be two points on a region
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(S T,
0 m d(p, q): the Euclidean distance between p
[ 1000 2000 3000 4000 5000 and q
FIGURE — An example of WRP problem with 10 regions ® D(p,q) = w - d(p, q): the Weightedllength
and three very-close optimum paths between (Or_COSt_) between p and q, where w is the
vertices (0 and 1), (2 and 3) and (4 and 5). unit weight of {; or the edge that the

segment (p, q) is on.
m T:the set of non-overlapping regions
m E: the set of edges
m V:the set of vertices
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FIGURE — An example of WRP problem with 10 regions
and three very-close optimum paths between
vertices (0 and 1), (2 and 3) and (4 and 5).

m T:the set of non-overlapping regions
m E: the set of edges
m V:the set of vertices

For a pair of two vertices u, v € V, the
weighted region problem (WRP) asks for the
minimum cost (or the weighted shortest) path

P*(u,v) = (u=0g,01,...,0k, Oks1 = V)
such that the weighted length
D(P*(u,v)) = Zf:o D(o;, 0j41) is minimum,

where every o, i € {1,...,k}, called a
crossing point, can be a point on an edge in E
or avertexin V.
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2000 m The problem is NP-hard or not: Unknown

m Currently, there is no known polynomial or
exponential time algorithm for finding the
exact weighted shortest path.

1000

0 1000 2000 3000 4000 5000 m The exiting algorithms to solve WRP are all
FIGURE — An example of WRP problem with 10 regions approximations.
and three very-close optimum paths between
vertices (0 and 1), (2 and 3) and (4 and 5).
m T:the set of regions
m E: the set of edges
m V:the set of vertices
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FIGURE — An example of WRP problem with 10 regions

and three very-close optimum paths between
vertices (0 and 1), (2 and 3) and (4 and 5).

m T:the set of regions
m E: the set of edges
m V:the set of vertices

An overview of the existing approaches:

m Exploiting Snell’s law
(impractical solutions)

m Using heuristic methods
(unpredictable results)

= Applying decomposition ideas, with a grid
of cells or a graph of discrete points, called
Steiner-points
(time-consuming for a close optimal result).
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FIGURE — An example of WRP problem with 10 regions

and three very-close optimum paths between
vertices (0 and 1), (2 and 3) and (4 and 5).

m T:the set of regions
m E:the set of edges
m V:the set of vertices

An overview of the existing approaches:

m Exploiting Snell’s law
(impractical solutions —practical solution)

m Using heuristic methods
(unpredictable results)

= Applying decomposition ideas, with a grid
of cells or a graph of discrete points, called
Steiner-points
(time-consuming for a close optimal result).

Nguyet Tran 1, i . Di Simone Linz

October 29-30, 2020



Proposed method
®0000000

Proposed method

1. Weighted shortest path crossing an edge sequence S

bi=by ¢ =ck v

= Given an ordered sequence of k edges

S = (ey,e,...,6e), where three consecutive
edges in S cannot be in the same triangles 4.
W= (wp,...,w)is the weight list of S, where

every w;, i € {0, ..., k}, is the unit weight of
the region between e; and e;, 1, with
e = (u,u) and e, 1 = (v, v).

B Puv)y=(WU=ry,n,...,l,ks1 =V)isa
path between two vertices u, v € V, crossing
an edge sequence, where r; is on e; with every
ie{1,...,k}

a. Otherwise, we present how to process it in the paper.

FIGURE — lllustration of Snell rays.

1
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Proposed method

1. Weighted shortest path crossing an edge sequence S

b, =by ¢c;=cp v

FIGURE — lllustration of Snell’'s law.

Snell’s law:

P(u, v) has the minimum weighted length
crossing S if and only if at every crossing point
ri on ej, for which r; is not an endpoint of ¢;, the
following condition holds:

FIGURE — lllustration of Snell rays. Wi_1 sinaj = W;sin §;
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Proposed method

1. Weighted shortest path crossing an edge sequence S

b, =by ¢c;=cp v

FIGURE — lllustration of Snell rays.

1

Snell ray:
m Let a; be apointone; € S.
= Apply Snell’s law from u, crossing e; at a4,
we can find the out-ray Ri.
= Suppose that R{ intersects e, € Sata
point a. Then, we can continue calculating
the path Pz = (u, a1, &, . . ., ag, RY),
where 1 < g < k and Rg is the out-ray of
the path at g5 € S.
= We define P, to be a Snell ray of u,
starting at the point ay, crossing S, from ey
to eg.
Snell path: P(u, v) is a Snell path if
m Every pointr, i € {1,...,k},is on the
interior of e;, which cannot be one of the
two endpoints of e;, and

= Snell’s law is obeyed at every r;.

October 29-30, 2020 10/20
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Proposed method

1. Weighted shortest path crossing an edge sequence S

b, =by ¢c;=cp v

= Two Snell rays Py, and Pe:
Pb: (U,b1,...,bj,R§))
Pe = (u, 01,...,0,-,72].0), where b; # ¢4

m P, and P cannot intersect each other.

FIGURE — lllustration of Snell rays.
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Proposed method

1. Weighted shortest path crossing an edge sequence S

Finding the Snell path P(u, v) (approximately):

= From the middle point my of e, create a Snell
ray Pm = (u,my, ..., Ry) crossing S.

u If eg.q, Where e, 1 = (v, v), is on the left (resp.
right) of Ry, then the Snell ray that hits v must
cross only the parts from p; to m; (resp. from m;
to gj). Thus, we trim e; = (p;, ;) to (p;, m;)
(resp. (mi, qi))-

= This process is iterated until Py, hits v, or all
edges in S are trimmed such that d(p;, gi) < 6,
where § be an extremely small value.

= Here, we employ the idea from the function
Find-Point in the work of (Mitchell and

FIGURE — lllustration of Pp,. Papadimitriou 1991).

However, Find-Snell-Path is different from

Find-Point by that, if the Snell path crosses an

endpoint of any original e; in S, Find-Snell-Path

will be stopped while Find-Point will still continue

the process.
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Proposed method

2. Main algorithm

5000

4000 1

D-graph: an undirected graph (Vp, Ep), where
m Vp = VU V¢ with V; being the set of critical
points 2.
® An edge in Ep between two points u and v in
Vp is created if there exists a Snell path
between u and v, which only cross the
interiors of the edges in E.

° 1000 2000 3000 4000 0 m The weight of every edge between u and v in
FIGURE — An example of WRP problem with 10 regions Ep is the minimum weighted length among all

and three very-close optimum paths between possible Snell paths between u and v.
vertices (0 and 1), (2 and 3) and (4 and 5).

3000 1

2000 1

1000 1

0

a. For V;, please see in the paper.
m T:the set of regions

m E: the set of edges
m V:the set of vertices
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2. Main algorithm Funnel: f = (r, S, W), where
mS=(ey,....6) W= (w,...,W_1)
m r € Vis the root of f
m The last edge e, € S is the bottom of f.

Notes:
=S o1 w/ B by ,
R "= /" & The Snell path from r to v crossing S can go
! ¢ n <1 . . .
L U [ o - b e around the adjacent edges at r and v with critical
b /] b b points (at most four possible paths, P; to P;).
Ch-
Py /,f’ : . @ Sy = We present in the paper how to avoid finding all of
1127 g : these four Snell paths.
I e, fas ‘ -
) iy m After finding the Snell path from r to v, let
2! 7 3 ) p1 L S;=8o0(c1), So =So(c)4 and Wy and Ws be
I SN AL two weight lists with respect to Sy and Sy,
P3 i : cr respectively. One of the following three conditions
! holds:

m Two new funnels f; = (r, Sy, W) and
fo = (r, Sz, Wh) are created.

FIGURE - lllustration of a funnel. m Only one new funnel fy = (r, Sy, Wy) or
f = (r, Sz, Wh) is created.

m No new funnel is created.

a. Appending cy or ¢, to the end of S.

1
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Proposed method

2. Main algorithm
Main idea:

® Building a D-graph for WS = (T, E, V).
m Applying a shortest path graph algorithm on the D-graph to

find the weighted shortest path between any pair of
vertices.

Building D-graph:
= Using a queue Q.

m For each vertex u € V, initializing funnels f = (r, S, W),
where r = u and S contains only one edge opposite to u.

m Pushing the funnels into Q.

m Popping one funnel f = (r, S, W) out Q, we then find the
Snell path from the root r to the vertex v, which is opposite
to the last edge e in S, crossing S.

m [f the Snell path between r and v crossing S exists,
updating the D-graph.

m Then, the new funnels (at most two) corresponding to f are
created and pushed into Q.
FIGURE — lllustration of a funnel. X .
= The process will be stopped when Q is empty.
Note: In practice, finding a Snell path will easily cross a vertex in
V and stop. Thus, not too many funnels will be created.
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Experimental results

m Scenario 1: Compare against Quadratic Programming

m Scenario 2: Compare against the Steiner-Point method (Lanthier, Maheshwari,
and Sack 2001)
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Scenario 2: Compare against the Steiner-Point method

5000

4000

3000

2000

1000

0
0 1000 2000 3000 4000 5000

FIGURE — An example of WRP problem with 10 regions
and three very-close optimum paths between
vertices (0 and 1), (2 and 3) and (4 and 5).
m T:the set of regions
m E: the set of edges
m V:the set of vertices

1

The Steiner-Point method:
m For each g; € E, mdiscrete points, called

Steiner points, are placed evenly along the
length of e;.

Let Gm = (Vm, Em) be a graph, where Vp,
contains all the Steiner points and the
vertices in V, and En, be the set of
connections.

For each region t; € F, the three vertices
and the Steiner points on the edges of {;
are connected mutually, creating
connections in Ep.

Let v, u € Vi, the weight of the connection
between v and uin Emis wyy - d(v, u),
where wyy is the unit weight of the region
or the edge that both v and u are on.

After building Gm, we apply Dijkstra
algorithm to find the weighted shortest
path between any two vertices in V.
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Experimental results

Scenario 2: Compare against the Steiner-Point method
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Our method:
m5=10"5
m After creating the D-graph, we also use
Dijkstra algorithm to find the weighted
0 1000 2000 3000 4000 5000 shortest path between two vertices.

FIGURE — An example of WRP problem with 10 regions
and three very-close optimum paths between
vertices (0 and 1), (2 and 3) and (4 and 5).

1000

m T:the set of regions
m E: the set of edges
m V:the set of vertices
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Experimental results

Scenario 2: Compare against the Steiner-Point method

Table 1. With the Release mode of Visual Studio C++2.

Number of regions 5 10 15 20 25 30 Let D and D’ be the weighted
Our method’s average times 0.02 0.11 0.37 0.75 1.82 3.03
o average times 0.00036 | 0.00083 | 0.0023 | 0.0020 | 0.0036 | 0.0044 length sums of all the result paths
%D 0.29% 0.69% LOT% | 2.02% | 245% | 3.10% of our method and the
10 averago times 017 0.42 0.78 132 176 Steiner-Point method per test
%D 0.00098% | 0.0021% | 0.0035% | 0.0069% | 0.0086% | 0.013% ivel
o0 | average times 0.4 133 2.20 363 1S 707 case, respectively.
me %D 0.00039% | 0.00074% | 0.0013% | 0.0025% | 0.0033% | 0.0046% m AD=D —D
300 average times 0.63 73 3.60 621 704 979 -
%D 0.00028% | 0.00050% | 0.00095% | 0.0019% | 0.0024% | 0.0031% AD
30 average times 0.86 2.10 143 6.82 957 |  13.05 " %D = ———
AD 0.00021% | 0.00038% | 0.00069% | 0.0014% | 0.0017% | 0.0024% (D + D/)/2
average times 113 333 5.80 804 1264 1732
m =40 %D 0.00015% | 0.00029% | 0.00056% | 0.0010% | 0.0013% | 0.0018% Results:

= Our results are always
shorter in weighted length.

m Our running times are faster
in case a close to an optimal
path is needed.

a. We note that, Table 1 in the paper is with the Debug mode of Visual Studio C++, where we can limit and stop
the case that occupies larger than 1.7 GB of memory. We have already updated the experimental results to that
the test cases are run in the Release mode of Visual Studio C++ (see Table 1 above), and the memory is not
constrained.
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