Symbolic Plans as High-Level Instructions for Reinforcement Learning

León Illanes, Xi Yan, Rodrigo Toro Icarte, Sheila A. McIlraith

ICAPS 2020
What is this presentation about?

- We want to tell an RL agent to do a specific task
- We want declarative task specification...
 - like planning!
- ...without having a full description of the environment.
 - like RL!

Combine them?
Why use RL?

● Impressive results in low-level control problems
 ○ e.g., Rubik’s cube manipulated by a robot hand
● Applicable without a given model
 ○ and without trying to learn one

...and why avoid it?

● Can be extremely inefficient
 ○ will need millions of training steps
● Is hard to use correctly!
 ○ specifying a reward is hard
 ○ value alignment problem
Why use AI Planning?

- It’s very efficient!
- Given a model, specifying new tasks is easy

...and why avoid it?

- Needs a model
A simple idea

- Use high-level model to define a task
 - Construct a high-level plan
 - Let RL deal with the low-level details

- Best of both worlds?
Our contributions

- Defined a new type of RL problem: Taskable RL
 - augments RL environments with high-level propositional symbols
 - this allows for easy representation of final-state goal problems
- Built a system to leverage symbolic models
 - high-level actions are used to identify options for hierarchical RL
 - learned option policies can be immediately transferred to new tasks
 - high-level plans are used as instructions, improving sample efficiency
- Showed that the approach is sound
 - Theoretically; when models are built properly
 - Empirically on some simple RL environments
Taskable RL Environments

\[E = \langle S, A, r, p, \gamma, P, L, R \rangle \]

- \(\langle S, A, r, p, \gamma \rangle \) is an MDP
- \(P \) is a set of propositions
- \(L : S \rightarrow 2^P \) is a labelling function
- \(R \in \mathbb{R} \) is the goal reward parameter
Plans as High-Level Instructions

- Given a model, we can find plans
- Given a plan, we can try to execute it
 - Learn low-level policies for planning actions

Issues:
- Suboptimality
 - Dealt with by partial-order planning
- Unexpected outcomes (bad models, bad policies, etc.)
 - Execution monitoring
Experiments and results - The Office World

![Diagram of office layout]

- **D**
- **C**
- **A**
- **B**
Other experiments - The Minecraft World

The diagram shows the average evaluation reward over the number of training steps for different tasks. The tasks are labeled as Task 1, Task 2, Task 3, and Task 4, and the lines represent different methods or models labeled as ql, hrl, seq, and pop.
Summary

- Defined **Taskable RL**, a new type of RL problem
- Built a system that leverage symbolic models
- Showed that the approach is sound and effective