Solving Large Real-Life Bus Driver Scheduling Problems with Complex Break Constraints

Lucas Kletzander Nysret Musliu

Christian Doppler Laboratory for Artificial Intelligence and Optimization for Planning and Scheduling, DBAI, TU Wien, Vienna, Austria

ICAPS 2020
Problem Definition

- Assign bus drivers to predetermined bus tours

<table>
<thead>
<tr>
<th>ℓ</th>
<th>tour<sub>ℓ</sub></th>
<th>start<sub>ℓ</sub></th>
<th>end<sub>ℓ</sub></th>
<th>startPos<sub>ℓ</sub></th>
<th>endPos<sub>ℓ</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>244</td>
<td>298</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>301</td>
<td>345</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>349</td>
<td>393</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>397</td>
<td>454</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>
Problem Definition

- **Assign bus drivers to predetermined bus tours**

<table>
<thead>
<tr>
<th>ℓ</th>
<th>tour_ℓ</th>
<th>start_ℓ</th>
<th>end_ℓ</th>
<th>startPos_ℓ</th>
<th>endPos_ℓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>244</td>
<td>298</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>301</td>
<td>345</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>349</td>
<td>393</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>397</td>
<td>454</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

Distance matrix

- $d_{i,i}$: Change vehicle at same position
- $d_{i,j}$ with $i \neq j$: Move to different position
Shift Constraints

Driving time D_s

Working time W_s

Total time T_s

Problem Definition

Problem Analysis

Results

Problem Input

Constraints

Solution

Start work l_1

Rest ℓ_1

Passive ride ℓ_2

Rest ℓ_2

End work ℓ_3

Lucas Kletzander, Nysret Musliu

Bus Driver Scheduling with Complex Break Constraints
Shift Constraints

- \(T_s \leq T_{\text{max}} = 14 \text{ hours} \)
Driving Time Constraints

- $D_s \leq D_{\text{max}} = 9 \text{ hours}$
- Regular driving breaks after at most 4 hours:

\[
\begin{align*}
\leq 4 \cdot 60 & \geq 30 \\
\geq 20 & \geq 20 \\
\geq 15 & \geq 15 & \geq 15
\end{align*}
\]
Working Time Constraints

- Working time W_s
- Driving time D_s
- Total time T_s
- Break ≥ 3 hours: shift split

Lucas Kletzander, Nysret Musliu
Bus Driver Scheduling with Complex Break Constraints
Problem Definition

Problem Analysis

Results

Problem Input

Constraints

Solution

Working Time Constraints

- Break ≥ 3 hours: shift split

Lucas Kletzander, Nysret Musliu

Bus Driver Scheduling with Complex Break Constraints
Working Time Constraints

- $W_s \leq W_{max} = 10$ hours
- At least $W_{min} = 6.5$ hours is paid
- Required rest break:
 - $W_s < 6$ hours: no rest break
 - $6 \leq W_s \leq 9$ hours: at least 30 minutes
 - $W_s > 9$ hours: at least 45 minutes
- 1 part ≥ 30 minutes + parts ≥ 15 minutes
- First part no later than 6 hours
- Maximum amount of unpaid rest: 1 or 1.5 hours

\[\begin{array}{c}
2 \cdot 60 \\
paid rest
\end{array} \quad \begin{array}{c}
\text{unpaid rest} \\
\text{centered 30 min break}
\end{array} \quad \begin{array}{c}
2 \cdot 60 \\
paid rest
\end{array}\]
Solution

$$\text{objective} = \sum_s 2 \cdot W'_s + T_s + \text{ride}_s + 30 \cdot \text{change}_s + 180 \cdot \text{split}_s$$
Contributions

- Analysis of problem characteristics
- New benchmark data set
- Solution method based on construction heuristic and simulated annealing
- Evaluation of employee satisfaction criteria
Figure: Demand distribution for instance 100_50.
Many options to distribute split breaks

Problem Definition

Problem Analysis

Results

Contributions

Characteristics

Benchmark Instances

Lucas Kletzander, Nysret Musliu
Bus Driver Scheduling with Complex Break Constraints
Benchmark Instances

- New instance generator
- Publicly available instance set\(^1\)
- 50 instances
- 10 different sizes: 10 tours (about 70 legs) to 100 tours (almost 1000 legs)

\(^1\)https://cdlab-artis.dbai.tuwien.ac.at/papers/sa-bds/
Importance of Employee Satisfaction

<table>
<thead>
<tr>
<th></th>
<th>Working time</th>
<th>Span</th>
<th>Passive ride</th>
<th>Tour changes</th>
<th>Shift splits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined</td>
<td>4840</td>
<td>4611</td>
<td>66</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Working time Change</td>
<td>−3.3%</td>
<td>+83.7%</td>
<td>+468.2%</td>
<td>+850%</td>
<td>+∞%</td>
</tr>
<tr>
<td>Working time</td>
<td>4680</td>
<td>8470</td>
<td>375</td>
<td>19</td>
<td>13</td>
</tr>
</tbody>
</table>
Solution Method

- **Construction Heuristic**
 - Assign to employee with least cost increase
 - Assign consecutive bus legs to same employee
 - Rebalance shifts

- **Simulated Annealing**
 - Swap single / multiple bus legs
 - High probabilities for shifts with high penalties
 - Simulated Annealing or Randomized Hill Climber
Results

<table>
<thead>
<tr>
<th>Instances</th>
<th>Construction Heuristic</th>
<th>Simulated Annealing</th>
<th>Hill-climbing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time</td>
<td>Empl.</td>
<td>Value</td>
</tr>
<tr>
<td>10</td>
<td>0.2</td>
<td>12.2</td>
<td>15747.2</td>
</tr>
<tr>
<td>20</td>
<td>0.54</td>
<td>24.2</td>
<td>32627.8</td>
</tr>
<tr>
<td>30</td>
<td>1.68</td>
<td>41</td>
<td>54141.6</td>
</tr>
<tr>
<td>40</td>
<td>3.1</td>
<td>55</td>
<td>73417</td>
</tr>
<tr>
<td>50</td>
<td>6.26</td>
<td>68.2</td>
<td>91372.8</td>
</tr>
<tr>
<td>60</td>
<td>10.62</td>
<td>80.8</td>
<td>109293.8</td>
</tr>
<tr>
<td>70</td>
<td>18.3</td>
<td>92.8</td>
<td>130024.2</td>
</tr>
<tr>
<td>80</td>
<td>26.54</td>
<td>107</td>
<td>148889</td>
</tr>
<tr>
<td>90</td>
<td>37.62</td>
<td>120.2</td>
<td>165171.6</td>
</tr>
<tr>
<td>100</td>
<td>48</td>
<td>130.4</td>
<td>183456.4</td>
</tr>
</tbody>
</table>

- 4 out of 5 best results for size 10 are optimal
- Gap of 3-5 % to optimum for medium size instances
- 4 % improvement to human expert solutions for very large instance with 2700 bus legs
- Improving 4 out of 10 instances on problem from Brasil
Summary

- Formalization of complex Bus Driver Scheduling Problem
- Analysis of problem characteristics
- Benchmark data set for future comparison
- Real-life objective including employee satisfaction
- Meta-heuristic for high-quality solutions
Summary

- Formalization of complex Bus Driver Scheduling Problem
- Analysis of problem characteristics
- Benchmark data set for future comparison
- Real-life objective including employee satisfaction
- Meta-heuristic for high-quality solutions

Thank you for your attention.
Are there any questions?