Analyzing and Avoiding Pathological Behavior in Parallel Best-First Search

Ryo Kuroiwa (University of Toronto)
Alex Fukunaga (University of Tokyo)
Parallel Best-First Search (BFS)

- BFS is used to solve graph search problems such as planning
- Many parallelization methods have been previously proposed
- Previous parallel A* methods have been experimentally shown to scale well

<table>
<thead>
<tr>
<th>Method</th>
<th>BFS</th>
<th>Environment</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDA*</td>
<td>A*</td>
<td>distributed</td>
<td>Kishimoto et al. 2009</td>
</tr>
<tr>
<td>PBNF</td>
<td>A*, WA*</td>
<td>multi-core</td>
<td>Burns et al. 2010</td>
</tr>
<tr>
<td>KPBFS</td>
<td>WA*</td>
<td>multi-core</td>
<td>Vidal et al. 2010</td>
</tr>
<tr>
<td>HDGBFS, LE, LG</td>
<td>GBFS</td>
<td>distributed</td>
<td>Kuroiwa and Fukunaga 2019</td>
</tr>
</tbody>
</table>
Parallel Best-First Search (BFS)

- BFS is used to solve graph search problems such as planning
- Many parallelization methods have been previously proposed
- Previous parallel A* methods have been experimentally shown to scale well

- What about parallel Greedy Best-First Search (GBFS)?

<table>
<thead>
<tr>
<th>Method</th>
<th>BFS</th>
<th>Environment</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDA*</td>
<td>A*</td>
<td>distributed</td>
<td>Kishimoto et al. 2009</td>
</tr>
<tr>
<td>PBNF</td>
<td>A*, WA*</td>
<td>multi-core</td>
<td>Burns et al. 2010</td>
</tr>
<tr>
<td>KPBFS</td>
<td>WA*</td>
<td>multi-core</td>
<td>Vidal et al. 2010</td>
</tr>
<tr>
<td>HDGBFS, LE, LG</td>
<td>GBFS</td>
<td>distributed</td>
<td>Kuroiwa and Fukunaga 2019</td>
</tr>
</tbody>
</table>
A Graph Search Problem Example with Greedy Best-First Search (GBFS)

- A solution of a graph search problem is a path from \(s_0 \) to \(s^* \)
- GBFS expands \(s \) with min. \(h(s) \) (a heuristic value)

\[
\begin{align*}
\text{GBFS expands } s & \text{ with min. } h(s) \text{ (a heuristic value)} \\
\end{align*}
\]
A Graph Search Problem Example with Greedy Best-First Search (GBFS)

- A solution of a graph search problem is a path from s_0 to s^*
- GBFS expands s with min. $h(s)$ (a heuristic value)

```
h(s_1) = 2  h(s_3) = 3  h(s_5) = 1  h(s^*) = 0
```

```
h(s_2) = 1  h(s_4) = 3  h(s_6) = 2
```

```
open
```

```
s_0
```

```
h(s_0) = 3
```

```
s_1
```

```
h(s_1) = 2
```

```
s_3
```

```
h(s_3) = 3
```

```
s_5
```

```
h(s_5) = 1
```

```
s^*
```

```
h(s^*) = 0
```

```
s_6
```

```
h(s_6) = 2
```

```
s_4
```

```
h(s_4) = 3
```
A Graph Search Problem Example with Greedy Best-First Search (GBFS)

- A solution of a graph search problem is a path from s_0 to s^*
- GBFS expands s with min. $h(s)$ (a heuristic value)
A Graph Search Problem Example with Greedy Best-First Search (GBFS)

- A solution of a graph search problem is a path from \(s_0 \) to \(s^* \)
- GBFS expands \(s \) with \(\min h(s) \) (a heuristic value)

![Graph Search Problem Example Diagram]

\[
\begin{align*}
 h(s_0) &= 3 \\
 h(s_1) &= 2 \\
 h(s_2) &= 1 \\
 h(s_3) &= 3 \\
 h(s_4) &= 3 \\
 h(s_5) &= 1 \\
 h(s_6) &= 2 \\
 h(s^*) &= 0
\end{align*}
\]
A Graph Search Problem Example with Greedy Best-First Search (GBFS)

- A solution of a graph search problem is a path from s_0 to s^*
- GBFS expands s with min. $h(s)$ (a heuristic value)
A Graph Search Problem Example with Greedy Best-First Search (GBFS)

- A solution of a graph search problem is a path from s_0 to s^*
- GBFS expands s with min. $h(s)$ (a heuristic value)

The tie-breaking strategy decides which to expand.
A Graph Search Problem Example with Greedy Best-First Search (GBFS)

- A solution of a graph search problem is a path from s_0 to s^*
- GBFS expands s with min. $h(s)$ (a heuristic value)
A Graph Search Problem Example with Greedy Best-First Search (GBFS)

- A solution of a graph search problem is a path from s_0 to s^*
- GBFS expands s with min. $h(s)$ (a heuristic value)
A solution of a graph search problem is a path from s_0 to s^*

- GBFS expands s with min. $h(s)$ (a heuristic value)
Pathological Behavior in Parallel GBFS
[Kuroiwa and Fukunaga 2019]

- GBFS, HDGBFS, LE, and LG were experimentally compared with the 5 min. time limit for each instance
Pathological Behavior in Parallel GBFS
[Kuroiwa and Fukunaga 2019]

● GBFS, HDGBFS, LE, and LG were experimentally compared with the 5 min. time limit for each instance

● Parallel GBFS methods **failed to solve easy instances** which GBFS solved within 1 sec. and 100 expansions
Pathological Behavior in Parallel GBFS
[Kuroiwa and Fukunaga 2019]

- GBFS, HDGBFS, LE, and LG were experimentally compared with the 5 min. time limit for each instance
- Parallel GBFS methods **failed to solve easy instances** which GBFS solved within 1 sec. and 100 expansions
- Parallel GBFS methods **expanded >1000 times as many states** as GBFS in some instances
Pathological Behavior in Parallel GBFS
[Kuroiwa and Fukunaga 2019]

- GBFS, HDGBFS, LE, and LG were experimentally compared with the 5 min. time limit for each instance
- Parallel GBFS methods **failed to solve easy instances** which GBFS solved within 1 sec. and 100 expansions
- Parallel GBFS methods **expanded >1000 times as many states** as GBFS in some instances
- **Can we obtain theoretical bound for the performance degradation?**
KBFS: a Model of Parallel BFS
[Kuroiwa and Fukunaga 2019]

- KBFS [Felner et al. 2003]: similar to BFS, but simultaneously expands k states
- HDA*, KPBFS, HDGBFS, and LE can be modeled as KBFS
KBFS: a Model of Parallel BFS

[Kuroiwa and Fukunaga 2019]

- KBFS [Felner et al. 2003]: similar to BFS, but simultaneously expands \(k \) states
- HDA*, KPBFS, HDGBFS, and LE can be modeled as KBFS

\[\begin{align*}
 k = 2 & & h(s_1) = 2 & & h(s_3) = 3 & & h(s_5) = 1 & & h(s^*) = 0 \\
 h(s_0) = 3 & & h(s_2) = 1 & & h(s_4) = 3 & & h(s_6) = 2
\end{align*} \]
KBFS: a Model of Parallel BFS
[Kuroiwa and Fukunaga 2019]

- KBFS [Felner et al. 2003]: similar to BFS, but simultaneously expands k states
- HDA*, KPBFS, HDGBFS, and LE can be modeled as KBFS

```
k = 2

h(s_0) = 3
h(s_1) = 2
h(s_2) = 1
h(s_3) = 3
h(s_4) = 3
h(s_5) = 1
h(s_6) = 2
h(s^*) = 0
```
KGBFS (a GBFS Version of KBFS) can expand arbitrarily more states than GBFS
KGBFS (a GBFS Version of KBFS) can expand arbitrarily more states than GBFS

GBFS expands 6 states

- $h(s_1) = 1$
- $h(s_3) = 2$
- $h(s_5) = 2$
- $h(s_7) = 1$
- $h(s^*) = 0$

Diagram:

- $h(s_0) = 2$
- $h(s_2) = 3$
- $h(s_4) = 2$
- $h(s_8) = 2$
- $i = 1, \ldots, n$
- $h(s_6^i) = 1$
KGBFS (a GBFS Version of KBFS) can expand arbitrarily more states than GBFS

KGBFS with $1 < k \leq n$

$h(s_1) = 1$ $h(s_3) = 2$ $h(s_5) = 2$ $h(s_7) = 1$ $h(s^*) = 0$

$h(s_0) = 2$ $h(s_2) = 3$ $h(s_4) = 2$ $h(s_6^i) = 1$ $h(s_8) = 2$

$i = 1, \ldots, n$
KGBFS (a GBFS Version of KBFS) can expand arbitrarily more states than GBFS

KGBFS with $1 < k \leq n$

$h(s_0) = 2$

$h(s_1) = 1$
$h(s_3) = 2$
$h(s_5) = 2$
$h(s_7) = 1$
$h(s^*) = 0$

$h(s_2) = 3$
$h(s_4) = 2$
$h(s_6^i) = 1$
$h(s_8) = 2$

$s_0 \rightarrow s_1$ and s_2

$s_1 \rightarrow s_3$
$s_2 \rightarrow s_4$

$s_3 \rightarrow s_5$
$s_4 \rightarrow s_6^i$

$s_5 \rightarrow s_7$
$s_6^i \rightarrow s_8$

$s_7 \rightarrow s^*$

$i = 1, \ldots, n$
KGBFS (a GBFS Version of KBFS) can expand arbitrarily more states than GBFS

KGBFS with $1 < k \leq n$

- $h(s_1) = 1$
- $h(s_3) = 2$
- $h(s_5) = 2$
- $h(s_7) = 1$
- $h(s^{*}) = 0$

- $h(s_0) = 2$
- $h(s_2) = 3$
- $h(s_4) = 2$
- $h(s_8) = 2$

For $i = 1, \ldots, n$:
- $h(s_6^i) = 1$
KGBFS (a GBFS Version of KBFS) can expand arbitrarily more states than GBFS

KGBFS with $1 < k \leq n$

$$
\begin{align*}
 h(s_1) &= 1 \\
 h(s_3) &= 2 \\
 h(s_5) &= 2 \\
 h(s_7) &= 1 \\
 h(s^*) &= 0 \\
 h(s_0) &= 2 \\
 h(s_2) &= 3 \\
 h(s_4) &= 2 \\
 h(s_6^i) &= 1 \\
 i &= 1, \ldots, n
\end{align*}
$$
KGBFS (a GBFS Version of KBFS) can expand arbitrarily more states than GBFS

KGBFS with $1 < k \leq n$ expands more than n states: $n \to \infty$

$h(s_1) = 1 \quad h(s_3) = 2 \quad h(s_5) = 2 \quad h(s_7) = 1 \quad h(s^*) = 0$

$h(s_0) = 2 \quad h(s_2) = 3 \quad h(s_4) = 2 \quad h(s_8) = 2$

$i = 1, \ldots, n \quad h(s_6^i) = 1$
KGBFS (a GBFS Version of KBFS) can expand arbitrarily more states than GBFS

KGBFS with \(1 < k \leq n \) expands more than \(n \) states: \(n \to \infty \)

Regardless of the tie-breaking strategy

\[
\begin{align*}
&h(s_1) = 1 & h(s_3) = 2 & h(s_5) = 2 & h(s_7) = 1 & h(s^*) = 0 \\
&h(s_0) = 2 & h(s_2) = 3 & h(s_4) = 2 & h(s_8) = 2 \\
&i = 1, \ldots, n & h(s_6^i) = 1
\end{align*}
\]
Pathology and t-Boundedness

- A is **pathological** relative to B if A expands arbitrarily more states than B does given some graph and heuristic.

- A is **t-bounded** relative to B if A expands no more than t times as many states as B does, for any graph and heuristic.
Pathologies in Parallel BFS

<table>
<thead>
<tr>
<th>Method</th>
<th>Heuristic</th>
<th>t-boundedness</th>
<th>Model</th>
<th>BFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDA* (k processes)</td>
<td>consistent</td>
<td>k-bounded</td>
<td>KBFS (KA*)</td>
<td>A*</td>
</tr>
<tr>
<td>HDA*</td>
<td>inconsistent</td>
<td>pathological</td>
<td>KBFS (KA*)</td>
<td>A*</td>
</tr>
<tr>
<td>KPBFS ($w > 1$)</td>
<td></td>
<td>pathological</td>
<td>KBFS (KWA*)</td>
<td>WA*</td>
</tr>
<tr>
<td>KPBFS, HDGBFS, LE</td>
<td></td>
<td>pathological</td>
<td>KGBFS</td>
<td>GBFS</td>
</tr>
<tr>
<td>LG</td>
<td></td>
<td>pathological</td>
<td>KGBFS-like</td>
<td>GBFS</td>
</tr>
</tbody>
</table>
KA* is \(k \)-Bounded Relative to A* with a consistent heuristic

- A heuristic is **consistent**: \(h(s') \geq h(s) + c(s, s') \)
 \(c(s, s') \) is the cost of the edge \((s, s')\)
- KA* with any tie-breaking strategy is \(k \)-bounded relative to A* with the worst-case tie-breaking strategy

Proof Sketch: A* expands \(s \) with \(f(s) = g(s) + h(s) \) where \(g(s) \) is the cost of the path from \(s_0 \) to \(s \). A* expands each \(s \) with \(f(s) < f^* \) (the cost of the optimal path). KA* expands \(s \) with \(f(s) \leq f^* \) at every \(k \) expansions because \(s' \) on an optimal path has \(f(s') \leq f^* \) by the consistency.
TB-Boundedness: Another Type of Bound

A is **TB-bounded** relative to B if A expands only states expanded by B with some tie-breaking strategy.

<table>
<thead>
<tr>
<th>Method</th>
<th>TB-boundedness</th>
<th>BFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDA*</td>
<td>no</td>
<td>A*</td>
</tr>
<tr>
<td>KPBFS ($w > 1$)</td>
<td>no</td>
<td>WA*</td>
</tr>
<tr>
<td>KPBFS, HDGBFS, LE, LG</td>
<td>no</td>
<td>GBFS</td>
</tr>
</tbody>
</table>
P_{GBFS}/C: a k-Bounded Parallel GBFS

- P_{GBFS} executes k threads of independent GBFS with different tie-breaking strategies in parallel [Kuroiwa and Fukunaga 2019] Each GBFS does not change its expansion order
- P_{GBFS}/C uses the shared evaluation cache of heuristic values to speed up each GBFS while keeping the expansion order
- P_{GBFS} and P_{GBFS}/C are also TB-bounded
SPUHF: a TB-Bounded Parallel GBFS

- PUHF (Parallel Under High-water mark First) expands s only if $h(s) \leq h(parent(s))$ or any other thread is not expanding a state.

- Proof Sketch: If $h(s) \leq h(parent(s))$, s is expanded by GBFS with some tie-breaking strategy.

- SPUHF (Speculative PUHF) executes independent parallel search (speculative search) using idling threads with the shared evaluation cache.
Bounded Parallel GBFS

- P_{GBFS}/C: k-bounded and TB-bounded
 A parallel portfolio of independent GBFS with different tie-breaking strategies using the shared evaluation cache k-bounded and TB-bounded

- SPUHF: TB-bounded
 A multi-core parallel GBFS similar to KPBFS

- See the paper for details
Experimental Results

<table>
<thead>
<tr>
<th>Method</th>
<th>Coverage</th>
<th># of solved instances unsolved by GBFS</th>
<th># of unsolved instances solved by GBFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LG</td>
<td>888</td>
<td>137</td>
<td>13</td>
</tr>
<tr>
<td>KPBFS</td>
<td>880</td>
<td>135</td>
<td>19</td>
</tr>
<tr>
<td>$P_{\text{GBFS/C}}$</td>
<td>928</td>
<td>164</td>
<td>0</td>
</tr>
<tr>
<td>SPUHF</td>
<td>864</td>
<td>115</td>
<td>15</td>
</tr>
</tbody>
</table>

Domain-wise results are complementary

55 domains from IPC-98-18
5 min. time limit
122 GiB memory limit
Conclusion/Summary of Contributions

- Proposed t-boundedness, Pathology, TB-boundedness
- Analyzed existing parallel BFS
- Proposed P_{GBFS}/C and SPUHF

<table>
<thead>
<tr>
<th>Method</th>
<th>t-boundedness</th>
<th>TB-boundedness</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDA* [Kishimoto et al. 2009] (k processes), consistent heuristic</td>
<td>k-bounded</td>
<td>no</td>
</tr>
<tr>
<td>HDA*, inconsistent heuristic</td>
<td>pathological</td>
<td>no</td>
</tr>
<tr>
<td>KPBFS ($w > 1$) [Vidal et al. 2010]</td>
<td>pathological</td>
<td>no</td>
</tr>
<tr>
<td>KPBFS, HDGBFS, LE, LG [Kuroiwa and Fukunaga 2019]</td>
<td>pathological</td>
<td>no</td>
</tr>
<tr>
<td>P_{GBFS}/C [New]</td>
<td>k-bounded</td>
<td>TB-bounded</td>
</tr>
<tr>
<td>SPUHF [New]</td>
<td>unknown</td>
<td>TB-bounded</td>
</tr>
</tbody>
</table>