Probabilistic Planning with Formal Performance Guarantees for Mobile Service Robots

Bruno Lacerda¹, Fatma Faruq², David Parker² and Nick Hawes¹ ¹Oxford Robotics Institute, University of Oxford, UK. {bruno, nickh}@robots.ox.ac.uk ²School of Computer Science, University of Birmingham, UK. {fxf603, d.a.parker}@cs.bham.ac.uk

Motivation

Motivation

Motivation

З

Topological Navigation

Topological Navigation

- Topological map represented as a graph where nodes correspond to relevant locations in the environment
 - Allows for navigation between locations, integrating off-the-shelf navigation with specialised navigation actions (door pass, docking, ...)
 - Integrated with robust monitored navigation that allows for failure recovery and requesting human help

Topological Navigation

- Topological map represented as a graph where nodes correspond to relevant locations in the environment
 - Allows for navigation between locations, integrating off-the-shelf navigation with specialised navigation actions (door pass, docking, ...)
 - Integrated with robust monitored navigation that allows for failure recovery and requesting human help
- Data is gathered for each edge traversal
 - Success/Failure
 - Navigation Time

Topological Prediction

- With the data, we can build temporal models of:
 - Probability of successful edge traversal
 - Expected time for edge traversal

- We have models learned by experience by the robot
 - Obtained from long term deployments

- We have models learned by experience by the robot
 - Obtained from long term deployments
- We want to take advantage of these real-life data based models
 - We will use formal methods
 - In particular, probabilistic model checking techniques

- We have models learned by experience by the robot
 - Obtained from long term deployments
- We want to take advantage of these real-life data based models
 - We will use formal methods
 - In particular, probabilistic model checking techniques

Stochastic models encoding the inherent uncertainty of robot's actions and human populated environments

> Markov Decision Processes

- We have models learned by experience by the robot
 - Obtained from long term deployments
- We want to take advantage of these real-life data based models
 - We will use formal methods
 - In particular, probabilistic model checking techniques

Stochastic models encoding the inherent uncertainty of robot's actions and human populated environments

> Markov Decision Processes

Optimisation of meaningful real life metrics

Success Probabilities and Expected Times

- We have models learned by experience by the robot
 - Obtained from long term deployments
- We want to take advantage of these real-life data based models
 - We will use formal methods

- We have models learned by experience by the robot
 - Obtained from long term deployments
- We want to take advantage of these real-life data based models

Formal probabilistic performance guarantees

Stochastic models encoding the inherent uncertainty of robot's actions and human populated environments

► We will

Markov Decision Processes Optimisation of meaningful real life metrics

Success Probabilities and Expected Times Use of formal language for intuitive and unambiguous task specifications

Linear Temporal Logic

MDP Modelling

Goal Specification

Co-Safe Linear Temporal Logic

"Do a metric map at waypoint 3"

 ${\tt F} metric_map_at_waypoint3$

Goal Specification

Co-Safe Linear Temporal Logic

"Do a metric map at waypoints 3 and 7, and make sure to navigate the edge from waypoint 3 and waypoint 4"

 $(\texttt{F}\textit{metric_map_at_waypoint3}) \land (\texttt{F}\textit{metric_map_at_waypoint7}) \land (\texttt{F}(at_waypoint3 \land (\texttt{X}\textit{at_waypoint4}))) \land (\texttt{F}(at_waypoint3 \land (\texttt{X}\textit{at_waypoint4}))) \land (\texttt{F}(at_waypoint3 \land (\texttt{X}\textit{at_waypoint4}))) \land (\texttt{F}(at_waypoint3 \land (\texttt{X}\textit{at_waypoint4})))) \land (\texttt{F}(at_waypoint3 \land (\texttt{X}\textit{at_waypoint4}))) \land (\texttt{F}(at_waypoint3 \land (\texttt{X}\textit{at_waypoint4})))) \land (\texttt{F}(at_waypoint3 \land (\texttt{X}\textit{at_waypoint4}))))) \land (\texttt{F}(at_waypoint3 \land (\texttt{X}\textit{at_waypoint4})))) \land (\texttt{F}(at_waypoint3 \land (\texttt{X}\textit{at_waypoint4}))))) \land (\texttt{F}(at_waypoint3 \land (\texttt{X}\textit{at_waypoint4}))))) \land (\texttt{F}(at_waypoint3 \land (\texttt{X}\textit{at_waypoint4})))) \land (\texttt{F}(at_waypoint3 \land (\texttt{X}\textit{at_waypoint4}))))) \land (\texttt{F}(at_waypoint3 \land (\texttt{X}\textit{at_waypoint4})))) \land (\texttt{X} at_waypoint4)))) \land (\texttt{F}(at_waypoint3 \land (\texttt{X} at_waypoint4)))) \land (\texttt{X} at_waypoint4))) \land (\texttt{X} at_waypoint4)) \land (\texttt{X} at_waypoint4))) \land (\texttt{X} at_waypoint4)) \land (\texttt{X} at_waypoint4))) \land (\texttt{X} at_waypoint4))) \land (\texttt{X} at_waypoint4)) \land (\texttt{X} at_waypoint4)) \land (\texttt{X} at_waypoint4))) \land (\texttt{X} at_waypoint4))) \land (\texttt{X} at_waypoint4))) \land (\texttt{X} at_waypoint4)) \land (\texttt{X} at_waypoint4))) \land (\texttt{X} at_waypoint4))) \land (\texttt{X} at_waypoint4))) \land (\texttt{X} at_waypoint4)) \land (\texttt{X} at_waypoint4))) \land (\texttt{X} at_waypoint4)) \land (\texttt{X} at_waypoint4))) \land (\texttt{X} at_waypo$

Goal Specification

Co-Safe Linear Temporal Logic

"Reach the living room without going through the bedroom"

 $\neg bedroom \ U \ livingroom$

$- \quad \text{co-safe spec } \varphi$

$- \quad \text{co-safe spec } \varphi$

1. **Be robust:** Maximise probability of visiting a sequence of states that satisfies the spec

 $- \quad \text{co-safe spec } \varphi$

- 1. **Be robust:** Maximise probability of visiting a sequence of states that satisfies the spec
- 2. **Do as much as possible:** Even when the overall spec becomes unachievable (e.g., because of a task that is to be executed behind a closed door), continue executing and achieve as much of the spec as possible

 $- \quad \text{co-safe spec } \varphi$

- 1. **Be robust:** Maximise probability of visiting a sequence of states that satisfies the spec
- 2. **Do as much as possible:** Even when the overall spec becomes unachievable (e.g., because of a task that is to be executed behind a closed door), continue executing and achieve as much of the spec as possible
- 3. **Be efficient:** Minimise expected time to execute the part of the task that is possible

Solution Diagram

https://github.com/strands-project/strands_executive/tree/kinetic-devel/mdp_plan_exec

Conclusions

Conclusions

- Contributions:
 - Stochastic modelling of service robot from long term deployment data
 - Goals specified in rich language, namely co-safe LTL
 - Novel solution technique for partial satisfiable co-safe LTL specifications over MDPs
 - ROS integration

Conclusions

- Contributions:
 - Stochastic modelling of service robot from long term deployment data
 - Goals specified in rich language, namely co-safe LTL
 - Novel solution technique for partial satisfiable co-safe LTL specifications over MDPs
 - ROS integration

- Future Work:
 - Uncertain models
 - Multi robot systems
 - Multi-objective reasoning

Thank you!

Check paper #312

