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Topological Navigation

* [opological map represented as a graph where nodes
correspond to relevant locations in the environment

» Allows for navigation between locations, integrating oft-the-shelt
navigation with specialised

navigation actions (door pass,
docking, ...)

» Integrated with robust monitored
navigation that allows for failure
recovery and requesting human help
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 Data is gathered for each edge
traversal

» Success/Failure

» Navigation Time



» Probability of successtful edge traversal

o With the data, we can build temporal models of:
» Expected time for edge traversal

Topological Prediction
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Using Formal Methods

e We have models learned by experience by the robot

» Obtained from long term deployments

e \We want to take advantage of these real-lite data based models

Formal probabilistic performance guarantees

Use
of formal language for
intuitive and unambiguous
task specifications

Stochastic
models encoding the
iInherent uncertainty of
robot's actions and human
populated environments
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Goal Specitication

Co-Safe Linear Temporal Logic

pu=true|p|-plerp|ove | Xe | Fo|pUp, where p e AP.

"‘Do a metric map at waypoint 3"

Fmetricomap_at_waypoint3



Goal Specitication

Co-Safe Linear Temporal Logic

pu=true|p|-plerp|ove | Xe | Fo|pUp, where p e AP.

“‘eventually”

"Do a metric map at waypoints 3 and 7, and make sure to navigate the
edge from waypoint 3 and waypoint 4"

(F metric_map_at_waypoint3) A (F metric_map_at_waypointT) A (F(at_waypoint3 A (X at_waypoint4)))



Goal Specitication

Co-Safe Linear Temporal Logic

pu=true|p|-plerp|ove | Xe | Fo|pUp, where p e AP.

d ‘eventually”

“Reach the living room without going through the bedroom”

—bedroom U livingroom
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1. Be robust: Maximise probability of visiting a sequence of states that
satisfies the spec

2. Do as much as possible: Even when the overall spec becomes
unachievable (e.g., because of a task that is to be executed behind a
closed door), continue executing and achieve as much of the spec as
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Partial Satisfiabiliy
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==  co-safe spec @

1. Be robust: Maximise probability of visiting a sequence of states that
satisfies the spec

2. Do as much as possible: Even when the overall spec becomes
unachievable (e.g., because of a task that is to be executed behind a
closed door), continue executing and achieve as much of the spec as
possible

3. Be efficient: Minimise expected time to execute the part of the task that
IS possible
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Solution Diagram
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ROS Integration
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https://github.com/strands-project/strands_executive/tree/kinetic-devel/mdp_plan_exec
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e Contributions:
» Stochastic modelling of service robot from long term deployment data
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» Novel solution technique for partial satisfiable co-safe LTL
specifications over MDPs

» ROS integration
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Conclusions

e Contributions:
» Stochastic modelling of service robot from long term deployment data
» Goals specified in rich language, namely co-safe LTL

» Novel solution technique for partial satisfiable co-safe LTL
specifications over MDPs

» ROS integration

e Future Work:
» Uncertain models
» Multi robot systems

» Multi-objective reasoning
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Thank you!

Check paper #312
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