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• Topological map represented as a graph where nodes 
correspond to relevant locations in the environment
‣ Allows for navigation between locations, integrating off-the-shelf 

navigation with specialised 
navigation actions (door pass, 
docking, …)
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navigation that allows for failure 
recovery and requesting human help
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• Data  is gathered for each edge 
traversal
‣ Success/Failure

‣ Navigation Time
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Topological Prediction
• With the data, we can build temporal models of: 

‣ Probability of successful edge traversal 

‣ Expected time for edge traversal

Fig. 4. reconstructed signal for traversability and time along different time periods, top left figure is the action outcomes used for the model building, the
remaining three figures represent the predicted pe(t) state along different time frames, one month (top right), one week (bottom left) and one day (bottom
right). Weekly and monthly periodicities are presented starting from Monday, the day depicted in the bottom left figure is a Thursday.

policies that maximise overall expected success of the LTL
task.

In order to generate a policy at a given time t, we start
by creating an MDP model based on the topological map
T = hV,E,N,nav , PEi. This Navigation MDP at time t
is defined as a tuple Mt = hS, s, A, �i, where: (i) S =
V [ {sf} is a finite set of states, corresponding to the
topological nodes, plus a dump state sf , which is reached
after a navigation action failure; (ii) s 2 S is the initial
state, corresponding to the current position of the robot in
the environment; (iii) A = E is a finite set of actions,
corresponding to the edges in the topological map; (iv)
� : S ⇥A⇥ S ! [0, 1] is a probabilistic transition function,
where

P
s02S �(s, a, s0) 2 {0, 1} for all s 2 S, a 2 A. For

vi, vj 2 S, if there is an edge e = (vi, vj) in the topological
map, we define �(vi, e, vj) = pe(t), �(vi, e, sf ) = 1� pe(t)
and �(vi, e, v) = 0 for all v 2 S \ {vj , sf}.

In [20], it is shown how, given a co-safe LTL formula
' and a cost function defined over state-action pairs of the
MDP (in our case, such function would be the expected time
to navigate between two nodes in the environment), one can
create policies that minimize the accumulated cost to gener-
ate a trace of the system that satisfies '. Broadly speaking,
LTL allows for the specification of goals that are not simply
reaching a given target node in the environment, but can
be temporally extended goals that require, for example, a
set of nodes to be visited in a given order, or to visit a
given node while avoiding a set of forbidden nodes. The co-
safe fragment of LTL contains all the formulas that can be
satisfied by a finite trace of the system. An example of such
a task is a mail delivery robot that needs to distribute mail to
different rooms in a building, and minimise the time spent
in delivery so it can be available to do other tasks as soon
as possible.

We adapted the approach in [20], and use the PRISM

model checker [21] to generate a policy that maximizes
the probability of satisfying a co-safe LTL formula, i.e., we
generate the policy that fulfils the task while minimizing the
probability of occurrence of a continuous navigation failure.

The fact that we can specify tasks that involve visiting
more than one node in the topological map allows us to
analyse the different choices taken by the robot at different
times. More specifically, for the navigation MDPs obtained
from the topological map depicted in Fig. 2, we analyse the
policies obtained for formula (F v1_F v14), i.e., “visit either
node v1 or node v14”. This task allows the policy to choose
which node to try to visit first, taking into account the current
position of the robot, and the traversability probabilities for
the edges in the topological map. Furthermore, it is a type
of task that is common for mobile robots. For example, a
data gathering robot might want to unload its data, and in
nodes v1 and v14 there are data unloading stations it can use.
Thus, to increase the robustness of the system, we want the
robot to choose the station it can navigate to with the lowest
probability of failure.

In Table III, we show the probabilities of being able
to execute the task, starting on v5, without any navigation
failures, for different times of day. As expected, it is possible
to see that during the times where it is more probable
for people to be present in the office, the probability of
fulfilling the task without navigation failures is higher. This
is because the robot asks for human intervention when he has
problems navigating, and the presence of people to help it
increases the probability of fulfilling the navigation task (we
do not consider these interactions with humans as failures).
Furthermore, we also analyse the optimal action for v5 at
different times of day. This illustrates the choice the robot
makes on which area of the environment to visit when at
v5. We depict the choice of visiting v14 in light gray, and
the choice of visiting v1 in dark gray. This choice is heavily
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Co-Safe Linear Temporal Logic

“Do a metric map at waypoint 3” 

Goal Specification

Fmetric map at waypoint3

“until”“eventually”“next”

decisions, one needs to keep track of how much time has
passed during execution. Thus, the optimal policies might
not be memoryless any more, and can be finite-memory. To
solve these problems optimally, we need to explicitly add an
elapsed time component to the state representation. For this
extended state representation, the policies are again memory-
less. However, the addition of the elapsed time component
incurs a large state-space explosion and severely limits the
size of the problems that can be solved.

Finally, given S
′ ⊆ S such that Pr

maxM (reach≤d
S′ ) = 1,

and a cost function c, we can define the stochastic short-

est path problem as finding a path that reaches a state in
S
′ with minimal cost, i.e., find the policy that achieves

E
minM (cumulreachS′

c
). The stochastic shortest path problem

can be reduced to a time-unbounded expected cumulative
cost problem with guaranteed convergence, by appropriately
changing the cost function.
Example 3. We define a reward and a cost structure over
the TMDP presented in Example 2. First, we assume that
the robot can gather a reward for interacting with people in
rooms i ∈ I . The value of this reward is given by how much
the person in each room i values interacting with the robot.
In our case, to simplify presentation, we assume reward 10
for the first interaction with each person:

r(s, a) = �������
10 if there exists i ∈ I s. t. a = interacti

and s[interacted i] = 0
0 otherwise

The above reward structure is an example of a soft goal
specification, defined over (state,action) pairs. Note that one
can also define soft goals as just state based rewards. Fur-
thermore, we assume there is a finite number of soft goals,
i.e., the amount of soft goal reward that can be accumulated
is finite. For soft goals that are only accumulated once, one
can easily modify the MDP model in order to guarantee the
finiteness of the soft goal reward, by adding an extra state
feature representing whether the reward for a given soft goal
has been gathered or not.

We can also define a cost structure that represents the
expected time to execute a given action. This cost structure
can be obtained from the time distributions in the TMDP
definition:

c(s, a) = �
s∈S

�M(s, a, s′)(�
t∈T ′

�
′
s,a,s′(t)t)

Multi-objective Problems In this paper, we also consider
multi-objective properties, which optimise two or more dis-
tinct objectives. To mix objective values, it is common to
consider their Pareto front. Let o1, . . . , on be different max-
imisation2 objectives (i.e., oi(⇡) = Pr

maxM (q) or oi(⇡) =
E

maxM (f)). Given policies ⇡, ⇡′ ∈ ⇧M, ⇡ Pareto-dominates

⇡
′, denoted ⇡ � ⇡

′, if ⇡ is at least as good as ⇡
′ for all

objectives, and strictly better than ⇡
′ for at least one of them:

⇡ � ⇡′ iff ∀ioi(⇡) ≥ oi(⇡′) and ∃ioi(⇡) > oi(⇡′)
2We present the notion of Pareto front only for maximisation

objectives in order to simplify the presentation. Its adaptation to a
mix of maximisation and minimisation objectives is straightforward.

The Pareto front for o1, . . . , on is then defined as the set of
policies which are not dominated by any other policy:

Par(o1, . . . , on) ={⇡ ∈ ⇧M � �∃⇡′∈⇧M ⇡
′ � ⇡}

The Pareto front can be represented as a finite set of de-
terministic policies ⇧(o1, . . . , on): Any value for o1, ..., on
corresponding to a policy in Par(o1, . . . , on) can be attained
by a randomised policy constructed by a convex combination
of two elements of ⇧(o1, . . . , on), e.g., a policy that behaves
like ⇡1 ∈ ⇧(o1, . . . , on), with probability ↵, and behaves like
⇡2 ∈ ⇧(o1, . . . , on), with probability 1 − ↵, 0 ≤ ↵ ≤ 1. We
can calculate such a set ⇧(o1, . . . , on) using the approach
presented in (Forejt, Kwiatkowska, and Parker 2012).

Syntactically Co-Safe Linear Temporal Logic

Linear temporal logic (LTL) (Pnueli 1981) is an extension
of propositional logic that provides a formal, convenient and
powerful way to specify a variety of qualitative properties
over a system’s execution. In this work, we use the syntac-

tically co-safe class of LTL formulas, for which formula '

over propositions AP is defined using the grammar:

' ∶∶= true � p � ¬p �'∧' �'∨' � X' � F' �'U', where p ∈ AP.
The X operator is read “next”, meaning that the formula it
precedes will be true in the next state. The F operator is
read “eventually”, meaning that the formula it precedes must
become true in some future state. The U operator is read
“until”, meaning that its second argument will eventually
become true in some state, and the first argument will be
continuously true until this point. See, e.g., (Pnueli 1981) for
the formal semantics of the logic.

Given � ∈ IPathM, we write � � ' to denote that � satis-
fies formula '. Furthermore, we write PrmaxM (') to denote
the maximum probability of satisfying ' from s in M. It
is known that this problem can be reduced to a reachability
problem in a product MDP (Vardi 1985).

Even though their semantics is defined over infinite se-
quences, co-safe LTL formulas always have a finite good

prefix (Kupferman and Vardi 2001). Given an LTL formula
' and an infinite sequence of sets of atomic propositions
w = w0w1... ∈ (2AP )! such that w � ', w has a good prefix
if there exists n ∈ N for which the truncated finite sequence
w�n = w0w1...wn is such that the concatenation w�n⋅w′ � '
for any infinite sequence w

′ ∈ (2AP )! . We denote as kw
'

the
length of the shortest good prefix of w for '.

Furthermore, for any co-safe LTL formula ' written over
AP , we can build a deterministic finite automaton (DFA)A' = �Q, q,QF ,2

AP
, �A'�, where: Q is a finite set of states;

q ∈ Q is the initial state; QF ⊆ Q is the set of accepting (i.e.,
final) states; 2AP is the alphabet; and �A' ∶ Q × 2AP → Q is
a transition function. A' accepts exactly the good prefixes
for ' (Kupferman and Vardi 2001). Given that a good prefix
satisfies ' regardless of how it is “completed’, an accepting
state qF ∈ QF is such that �A'(qF ,↵) ∈ QF for all ↵ ∈ 2AP .

We finish by adding time bounds to our co-safe LTL spec-
ifications. Let d ∈ N be a time bound and ' a co-safe LTL
formula. We say that � = s0(a0, t0)s1(a1, t1) ⋅ ⋅ ⋅ ∈ IPathM
satisfies ' within the time bound d, denoted � � '

≤d iff
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Co-Safe Linear Temporal Logic

“Do a metric map at waypoints 3 and 7, and make sure to navigate the 
edge from waypoint 3 and waypoint 4”

Goal Specification

(Fmetric map at waypoint3) ^ (Fmetric map at waypoint7) ^ (F(at waypoint3 ^ (X at waypoint4)))

“until”“eventually”“next”

decisions, one needs to keep track of how much time has
passed during execution. Thus, the optimal policies might
not be memoryless any more, and can be finite-memory. To
solve these problems optimally, we need to explicitly add an
elapsed time component to the state representation. For this
extended state representation, the policies are again memory-
less. However, the addition of the elapsed time component
incurs a large state-space explosion and severely limits the
size of the problems that can be solved.

Finally, given S
′ ⊆ S such that Pr

maxM (reach≤d
S′ ) = 1,

and a cost function c, we can define the stochastic short-

est path problem as finding a path that reaches a state in
S
′ with minimal cost, i.e., find the policy that achieves

E
minM (cumulreachS′

c
). The stochastic shortest path problem

can be reduced to a time-unbounded expected cumulative
cost problem with guaranteed convergence, by appropriately
changing the cost function.
Example 3. We define a reward and a cost structure over
the TMDP presented in Example 2. First, we assume that
the robot can gather a reward for interacting with people in
rooms i ∈ I . The value of this reward is given by how much
the person in each room i values interacting with the robot.
In our case, to simplify presentation, we assume reward 10
for the first interaction with each person:

r(s, a) = �������
10 if there exists i ∈ I s. t. a = interacti

and s[interacted i] = 0
0 otherwise

The above reward structure is an example of a soft goal
specification, defined over (state,action) pairs. Note that one
can also define soft goals as just state based rewards. Fur-
thermore, we assume there is a finite number of soft goals,
i.e., the amount of soft goal reward that can be accumulated
is finite. For soft goals that are only accumulated once, one
can easily modify the MDP model in order to guarantee the
finiteness of the soft goal reward, by adding an extra state
feature representing whether the reward for a given soft goal
has been gathered or not.

We can also define a cost structure that represents the
expected time to execute a given action. This cost structure
can be obtained from the time distributions in the TMDP
definition:

c(s, a) = �
s∈S

�M(s, a, s′)(�
t∈T ′

�
′
s,a,s′(t)t)

Multi-objective Problems In this paper, we also consider
multi-objective properties, which optimise two or more dis-
tinct objectives. To mix objective values, it is common to
consider their Pareto front. Let o1, . . . , on be different max-
imisation2 objectives (i.e., oi(⇡) = Pr

maxM (q) or oi(⇡) =
E

maxM (f)). Given policies ⇡, ⇡′ ∈ ⇧M, ⇡ Pareto-dominates

⇡
′, denoted ⇡ � ⇡

′, if ⇡ is at least as good as ⇡
′ for all

objectives, and strictly better than ⇡
′ for at least one of them:

⇡ � ⇡′ iff ∀ioi(⇡) ≥ oi(⇡′) and ∃ioi(⇡) > oi(⇡′)
2We present the notion of Pareto front only for maximisation

objectives in order to simplify the presentation. Its adaptation to a
mix of maximisation and minimisation objectives is straightforward.

The Pareto front for o1, . . . , on is then defined as the set of
policies which are not dominated by any other policy:

Par(o1, . . . , on) ={⇡ ∈ ⇧M � �∃⇡′∈⇧M ⇡
′ � ⇡}

The Pareto front can be represented as a finite set of de-
terministic policies ⇧(o1, . . . , on): Any value for o1, ..., on
corresponding to a policy in Par(o1, . . . , on) can be attained
by a randomised policy constructed by a convex combination
of two elements of ⇧(o1, . . . , on), e.g., a policy that behaves
like ⇡1 ∈ ⇧(o1, . . . , on), with probability ↵, and behaves like
⇡2 ∈ ⇧(o1, . . . , on), with probability 1 − ↵, 0 ≤ ↵ ≤ 1. We
can calculate such a set ⇧(o1, . . . , on) using the approach
presented in (Forejt, Kwiatkowska, and Parker 2012).

Syntactically Co-Safe Linear Temporal Logic

Linear temporal logic (LTL) (Pnueli 1981) is an extension
of propositional logic that provides a formal, convenient and
powerful way to specify a variety of qualitative properties
over a system’s execution. In this work, we use the syntac-

tically co-safe class of LTL formulas, for which formula '

over propositions AP is defined using the grammar:

' ∶∶= true � p � ¬p �'∧' �'∨' � X' � F' �'U', where p ∈ AP.
The X operator is read “next”, meaning that the formula it
precedes will be true in the next state. The F operator is
read “eventually”, meaning that the formula it precedes must
become true in some future state. The U operator is read
“until”, meaning that its second argument will eventually
become true in some state, and the first argument will be
continuously true until this point. See, e.g., (Pnueli 1981) for
the formal semantics of the logic.

Given � ∈ IPathM, we write � � ' to denote that � satis-
fies formula '. Furthermore, we write PrmaxM (') to denote
the maximum probability of satisfying ' from s in M. It
is known that this problem can be reduced to a reachability
problem in a product MDP (Vardi 1985).

Even though their semantics is defined over infinite se-
quences, co-safe LTL formulas always have a finite good

prefix (Kupferman and Vardi 2001). Given an LTL formula
' and an infinite sequence of sets of atomic propositions
w = w0w1... ∈ (2AP )! such that w � ', w has a good prefix
if there exists n ∈ N for which the truncated finite sequence
w�n = w0w1...wn is such that the concatenation w�n⋅w′ � '
for any infinite sequence w

′ ∈ (2AP )! . We denote as kw
'

the
length of the shortest good prefix of w for '.

Furthermore, for any co-safe LTL formula ' written over
AP , we can build a deterministic finite automaton (DFA)A' = �Q, q,QF ,2

AP
, �A'�, where: Q is a finite set of states;

q ∈ Q is the initial state; QF ⊆ Q is the set of accepting (i.e.,
final) states; 2AP is the alphabet; and �A' ∶ Q × 2AP → Q is
a transition function. A' accepts exactly the good prefixes
for ' (Kupferman and Vardi 2001). Given that a good prefix
satisfies ' regardless of how it is “completed’, an accepting
state qF ∈ QF is such that �A'(qF ,↵) ∈ QF for all ↵ ∈ 2AP .

We finish by adding time bounds to our co-safe LTL spec-
ifications. Let d ∈ N be a time bound and ' a co-safe LTL
formula. We say that � = s0(a0, t0)s1(a1, t1) ⋅ ⋅ ⋅ ∈ IPathM
satisfies ' within the time bound d, denoted � � '

≤d iff
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Co-Safe Linear Temporal Logic

“Reach the living room without going through the bedroom” 

Goal Specification

“until”“eventually”“next”

decisions, one needs to keep track of how much time has
passed during execution. Thus, the optimal policies might
not be memoryless any more, and can be finite-memory. To
solve these problems optimally, we need to explicitly add an
elapsed time component to the state representation. For this
extended state representation, the policies are again memory-
less. However, the addition of the elapsed time component
incurs a large state-space explosion and severely limits the
size of the problems that can be solved.

Finally, given S
′ ⊆ S such that Pr

maxM (reach≤d
S′ ) = 1,

and a cost function c, we can define the stochastic short-

est path problem as finding a path that reaches a state in
S
′ with minimal cost, i.e., find the policy that achieves

E
minM (cumulreachS′

c
). The stochastic shortest path problem

can be reduced to a time-unbounded expected cumulative
cost problem with guaranteed convergence, by appropriately
changing the cost function.
Example 3. We define a reward and a cost structure over
the TMDP presented in Example 2. First, we assume that
the robot can gather a reward for interacting with people in
rooms i ∈ I . The value of this reward is given by how much
the person in each room i values interacting with the robot.
In our case, to simplify presentation, we assume reward 10
for the first interaction with each person:

r(s, a) = �������
10 if there exists i ∈ I s. t. a = interacti

and s[interacted i] = 0
0 otherwise

The above reward structure is an example of a soft goal
specification, defined over (state,action) pairs. Note that one
can also define soft goals as just state based rewards. Fur-
thermore, we assume there is a finite number of soft goals,
i.e., the amount of soft goal reward that can be accumulated
is finite. For soft goals that are only accumulated once, one
can easily modify the MDP model in order to guarantee the
finiteness of the soft goal reward, by adding an extra state
feature representing whether the reward for a given soft goal
has been gathered or not.

We can also define a cost structure that represents the
expected time to execute a given action. This cost structure
can be obtained from the time distributions in the TMDP
definition:

c(s, a) = �
s∈S

�M(s, a, s′)(�
t∈T ′

�
′
s,a,s′(t)t)

Multi-objective Problems In this paper, we also consider
multi-objective properties, which optimise two or more dis-
tinct objectives. To mix objective values, it is common to
consider their Pareto front. Let o1, . . . , on be different max-
imisation2 objectives (i.e., oi(⇡) = Pr

maxM (q) or oi(⇡) =
E

maxM (f)). Given policies ⇡, ⇡′ ∈ ⇧M, ⇡ Pareto-dominates

⇡
′, denoted ⇡ � ⇡

′, if ⇡ is at least as good as ⇡
′ for all

objectives, and strictly better than ⇡
′ for at least one of them:

⇡ � ⇡′ iff ∀ioi(⇡) ≥ oi(⇡′) and ∃ioi(⇡) > oi(⇡′)
2We present the notion of Pareto front only for maximisation

objectives in order to simplify the presentation. Its adaptation to a
mix of maximisation and minimisation objectives is straightforward.

The Pareto front for o1, . . . , on is then defined as the set of
policies which are not dominated by any other policy:

Par(o1, . . . , on) ={⇡ ∈ ⇧M � �∃⇡′∈⇧M ⇡
′ � ⇡}

The Pareto front can be represented as a finite set of de-
terministic policies ⇧(o1, . . . , on): Any value for o1, ..., on
corresponding to a policy in Par(o1, . . . , on) can be attained
by a randomised policy constructed by a convex combination
of two elements of ⇧(o1, . . . , on), e.g., a policy that behaves
like ⇡1 ∈ ⇧(o1, . . . , on), with probability ↵, and behaves like
⇡2 ∈ ⇧(o1, . . . , on), with probability 1 − ↵, 0 ≤ ↵ ≤ 1. We
can calculate such a set ⇧(o1, . . . , on) using the approach
presented in (Forejt, Kwiatkowska, and Parker 2012).

Syntactically Co-Safe Linear Temporal Logic

Linear temporal logic (LTL) (Pnueli 1981) is an extension
of propositional logic that provides a formal, convenient and
powerful way to specify a variety of qualitative properties
over a system’s execution. In this work, we use the syntac-

tically co-safe class of LTL formulas, for which formula '

over propositions AP is defined using the grammar:

' ∶∶= true � p � ¬p �'∧' �'∨' � X' � F' �'U', where p ∈ AP.
The X operator is read “next”, meaning that the formula it
precedes will be true in the next state. The F operator is
read “eventually”, meaning that the formula it precedes must
become true in some future state. The U operator is read
“until”, meaning that its second argument will eventually
become true in some state, and the first argument will be
continuously true until this point. See, e.g., (Pnueli 1981) for
the formal semantics of the logic.

Given � ∈ IPathM, we write � � ' to denote that � satis-
fies formula '. Furthermore, we write PrmaxM (') to denote
the maximum probability of satisfying ' from s in M. It
is known that this problem can be reduced to a reachability
problem in a product MDP (Vardi 1985).

Even though their semantics is defined over infinite se-
quences, co-safe LTL formulas always have a finite good

prefix (Kupferman and Vardi 2001). Given an LTL formula
' and an infinite sequence of sets of atomic propositions
w = w0w1... ∈ (2AP )! such that w � ', w has a good prefix
if there exists n ∈ N for which the truncated finite sequence
w�n = w0w1...wn is such that the concatenation w�n⋅w′ � '
for any infinite sequence w

′ ∈ (2AP )! . We denote as kw
'

the
length of the shortest good prefix of w for '.

Furthermore, for any co-safe LTL formula ' written over
AP , we can build a deterministic finite automaton (DFA)A' = �Q, q,QF ,2

AP
, �A'�, where: Q is a finite set of states;

q ∈ Q is the initial state; QF ⊆ Q is the set of accepting (i.e.,
final) states; 2AP is the alphabet; and �A' ∶ Q × 2AP → Q is
a transition function. A' accepts exactly the good prefixes
for ' (Kupferman and Vardi 2001). Given that a good prefix
satisfies ' regardless of how it is “completed’, an accepting
state qF ∈ QF is such that �A'(qF ,↵) ∈ QF for all ↵ ∈ 2AP .

We finish by adding time bounds to our co-safe LTL spec-
ifications. Let d ∈ N be a time bound and ' a co-safe LTL
formula. We say that � = s0(a0, t0)s1(a1, t1) ⋅ ⋅ ⋅ ∈ IPathM
satisfies ' within the time bound d, denoted � � '

≤d iff
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¬bedroom U livingroom

<latexit sha1_base64="aTbZLuRybbKL+4mH7uiktfLSbQo=">AAACBnicbVDLSgNBEJyNrxhfqx5FGAyCp7ArAT0GvXiMYB6QLGF2tjcZMjuzzMwGwpKTF3/FiwdFvPoN3vwbJ4+DJhY0FFXddHeFKWfaeN63U1hb39jcKm6Xdnb39g/cw6Omlpmi0KCSS9UOiQbOBDQMMxzaqQKShBxa4fB26rdGoDST4sGMUwgS0hcsZpQYK/Xc066APg4hUlImuIsbtjgbMdGfCj237FW8GfAq8RekjBao99yvbiRploAwlBOtO76XmiAnyjDKYVLqZhpSQoekDx1LBUlAB/nsjQk+t0qEY6lsCYNn6u+JnCRaj5PQdibEDPSyNxX/8zqZia+DnIk0MyDofFGccWwknmaCI6aAGj62hFDF7K2YDogi1NjkSjYEf/nlVdK8rPjVSvW+Wq7dLOIoohN0hi6Qj65QDd2hOmogih7RM3pFb86T8+K8Ox/z1oKzmDlGf+B8/gAalphF</latexit>
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Solution Diagram
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co-safe LTL specification 'MDP M

DFA A'⌦

Product MDP M'

Pruned product MDP Mprune
'

Progression function p'
<latexit sha1_base64="IdKQ+q7CJN8UfeCDV1O+4/eCB1M=">AAACCXicbVC7TsMwFHXKq5RXgJHFokViqpIuMFawMBaJPqQ2ihzXaa06tmU7laqoKwu/wsIAQqz8ARt/g9NmgJYjWTo651xd3xNJRrXxvG+ntLG5tb1T3q3s7R8cHrnHJx0tUoVJGwsmVC9CmjDKSdtQw0hPKoKSiJFuNLnN/e6UKE0FfzAzSYIEjTiNKUbGSqELW0qMFNF5AMYpx7kMazIcTJGSY1oL3apX9xaA68QvSBUUaIXu12AocJoQbjBDWvd9T5ogQ8pQzMi8Mkg1kQhP0Ij0LeUoITrIFpfM4YVVhjAWyj5u4EL9PZGhROtZEtlkgsxYr3q5+J/XT018HWSUy9QQjpeL4pRBI2BeCxxSRbBhM0sQVtT+FeIxUggbW17FluCvnrxOOo2679X9+0a1eVPUUQZn4BxcAh9cgSa4Ay3QBhg8gmfwCt6cJ+fFeXc+ltGSU8ycgj9wPn8Ad5WaJw==</latexit><latexit sha1_base64="IdKQ+q7CJN8UfeCDV1O+4/eCB1M=">AAACCXicbVC7TsMwFHXKq5RXgJHFokViqpIuMFawMBaJPqQ2ihzXaa06tmU7laqoKwu/wsIAQqz8ARt/g9NmgJYjWTo651xd3xNJRrXxvG+ntLG5tb1T3q3s7R8cHrnHJx0tUoVJGwsmVC9CmjDKSdtQw0hPKoKSiJFuNLnN/e6UKE0FfzAzSYIEjTiNKUbGSqELW0qMFNF5AMYpx7kMazIcTJGSY1oL3apX9xaA68QvSBUUaIXu12AocJoQbjBDWvd9T5ogQ8pQzMi8Mkg1kQhP0Ij0LeUoITrIFpfM4YVVhjAWyj5u4EL9PZGhROtZEtlkgsxYr3q5+J/XT018HWSUy9QQjpeL4pRBI2BeCxxSRbBhM0sQVtT+FeIxUggbW17FluCvnrxOOo2679X9+0a1eVPUUQZn4BxcAh9cgSa4Ay3QBhg8gmfwCt6cJ+fFeXc+ltGSU8ycgj9wPn8Ad5WaJw==</latexit><latexit sha1_base64="IdKQ+q7CJN8UfeCDV1O+4/eCB1M=">AAACCXicbVC7TsMwFHXKq5RXgJHFokViqpIuMFawMBaJPqQ2ihzXaa06tmU7laqoKwu/wsIAQqz8ARt/g9NmgJYjWTo651xd3xNJRrXxvG+ntLG5tb1T3q3s7R8cHrnHJx0tUoVJGwsmVC9CmjDKSdtQw0hPKoKSiJFuNLnN/e6UKE0FfzAzSYIEjTiNKUbGSqELW0qMFNF5AMYpx7kMazIcTJGSY1oL3apX9xaA68QvSBUUaIXu12AocJoQbjBDWvd9T5ogQ8pQzMi8Mkg1kQhP0Ij0LeUoITrIFpfM4YVVhjAWyj5u4EL9PZGhROtZEtlkgsxYr3q5+J/XT018HWSUy9QQjpeL4pRBI2BeCxxSRbBhM0sQVtT+FeIxUggbW17FluCvnrxOOo2679X9+0a1eVPUUQZn4BxcAh9cgSa4Ay3QBhg8gmfwCt6cJ+fFeXc+ltGSU8ycgj9wPn8Ad5WaJw==</latexit><latexit sha1_base64="IdKQ+q7CJN8UfeCDV1O+4/eCB1M=">AAACCXicbVC7TsMwFHXKq5RXgJHFokViqpIuMFawMBaJPqQ2ihzXaa06tmU7laqoKwu/wsIAQqz8ARt/g9NmgJYjWTo651xd3xNJRrXxvG+ntLG5tb1T3q3s7R8cHrnHJx0tUoVJGwsmVC9CmjDKSdtQw0hPKoKSiJFuNLnN/e6UKE0FfzAzSYIEjTiNKUbGSqELW0qMFNF5AMYpx7kMazIcTJGSY1oL3apX9xaA68QvSBUUaIXu12AocJoQbjBDWvd9T5ogQ8pQzMi8Mkg1kQhP0Ij0LeUoITrIFpfM4YVVhjAWyj5u4EL9PZGhROtZEtlkgsxYr3q5+J/XT018HWSUy9QQjpeL4pRBI2BeCxxSRbBhM0sQVtT+FeIxUggbW17FluCvnrxOOo2679X9+0a1eVPUUQZn4BxcAh9cgSa4Ay3QBhg8gmfwCt6cJ+fFeXc+ltGSU8ycgj9wPn8Ad5WaJw==</latexit>
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