Strengthening Potential Heuristics with Mutexes and Disambiguations

Daniel Fišer, Rostislav Horčík, Antonín Komenda

Czech Technical University in Prague
Faculty of Electrical Engineering
danfis@danfis.cz, {xhorcik,antonin.komenda}@fel.cvut.cz

October 15, 2020
Background

Finite Domain Representation (FDR)

- Multi-valued variables: $\mathcal{V} = \{V_1, V_2, \ldots\}$,
- State s is an assignment to variables \mathcal{V},
- Operator $o = \langle \text{pre}(o), \text{eff}(o) \rangle$, pre($o$), eff($o$) partial assignments to \mathcal{V},
- Initial state I,
- Goal specification G is a partial assignment.

 Mutex

- A set of facts \mathcal{M} such that $\mathcal{M} \not\subseteq s$ for every reachable state s.
- Facts from each variable (mutex group) are pairwise mutex.
- We can infer mutexes with h^m heuristic.
Disambiguation of a variable V for a partial state p is a set of facts from V consistent with p given a set of mutexes.

Variables:
- $\text{dom}(V_1) = \{A, B, C\}$
- $\text{dom}(V_2) = \{X, Y, Z\}$

Mutexes:
- $\{V_1=A, V_2=X\}$
- $\{V_1=A, V_2=Z\}$

Partial state: $p = \{V_1=A\}$
Disambiguation of a variable V for a partial state p is a set of facts from V consistent with p given a set of mutexes.

Variables:
\[\text{dom}(V_1) = \{A, B, C\} \]
\[\text{dom}(V_2) = \{X, Y, Z\} \]

Mutexes:
\[\{V_1=A, V_2=X\} \]
\[\{V_1=A, V_2=Z\} \]

Partial state: $p = \{V_1=A\}$
Disambiguation of a variable V for a partial state p is a set of facts from V consistent with p given a set of mutexes.

Variables:
- $\text{dom}(V_1) = \{A, B, C\}$
- $\text{dom}(V_2) = \{X, Y, Z\}$

Mutexes:
- $\{V_1=A, V_2=X\}$
- $\{V_1=A, V_2=Z\}$

Partial state: $p = \{V_1=A\}$
Disambiguation of a variable V for a partial state p is a set of facts from V consistent with p given a set of mutexes.

Variables: $\text{dom}(V_1) = \{A, B, C\}$, $\text{dom}(V_2) = \{X, Y, Z\}$

 Mutexes: $\{V_1=A, V_2=X\}$, $\{V_1=A, V_2=Z\}$

Partial state: $p = \{V_1=A\} \rightarrow \{V_1=A, V_2=Y\}$
Disambiguation of a variable V for a partial state p is a set of facts from V consistent with p given a set of mutexes.

Variables:
$\text{dom}(V_1) = \{A, B, C\}$
$\text{dom}(V_2) = \{X, Y, Z\}$

Mutexes:
$\{V_1=A, V_2=X\}$

Partial state: $p = \{V_1=A\}$
Disambiguation of a variable V for a partial state p is a set of facts from V consistent with p given a set of mutexes.

Variables: V_1 and V_2.
- $\text{dom}(V_1) = \{A, B, C\}$
- $\text{dom}(V_2) = \{X, Y, Z\}$

Mutexes:
- $V_1 = A, V_2 = X$
- $V_1 = B, V_2 = Y$
- $V_1 = C, V_2 = Z$

Partial state: $p = \{V_1 = A\}$
Disambiguation of a variable V for a partial state p is a set of facts from V consistent with p given a set of mutexes.

Variables: $\text{dom}(V_1) = \{A, B, C\}$
$\text{dom}(V_2) = \{X, Y, Z\}$

Mutexes: $\{V_1=A, V_2=X\}$

Partial state: $p = \{V_1=A\}$
Disambiguation of a variable V for a partial state p is a set of facts from V consistent with p given a set of mutexes.

Variables:
- $\text{dom}(V_1) = \{A, B, C\}$
- $\text{dom}(V_2) = \{X, Y, Z\}$

Mutexes:
- $\{V_1=A, V_2=X\}$
- $\{V_1=A, V_2=Y\}$
- $\{V_1=A, V_2=Z\}$

Partial state:
- $p = \{V_1=A\}$
- $\rightarrow \{V_1=A, (V_2=Y \text{ or } V_2=Z)\}$
Disambiguation of a variable V for a partial state p is a set of facts from V consistent with p given a set of mutexes.

Variables:
- $\text{dom}(V_1) = \{A, B, C\}$
- $\text{dom}(V_2) = \{X, Y, Z\}$
- $\text{dom}(V_3) = \{1, 2, 3\}$

Mutexes:
- $\{V_1=A, V_2=X\}$
- $\{V_1=A, V_2=Z\}$
- $\{V_2=Y, V_3=2\}$
- $\{V_2=Y, V_3=3\}$

Partial state: $p = \{V_1=A\}$

![Diagram](image-url)
Disambiguation

Disambiguation of a variable V for a partial state p is a set of facts from V consistent with p given a set of mutexes.

Variables:
- $\text{dom}(V_1) = \{A, B, C\}$
- $\text{dom}(V_2) = \{X, Y, Z\}$
- $\text{dom}(V_3) = \{1, 2, 3\}$

Mutexes:
- $\{V_1=A, V_2=X\}$
- $\{V_1=A, V_2=Z\}$
- $\{V_2=Y, V_3=2\}$
- $\{V_2=Y, V_3=3\}$

Partial state: $p = \{V_1=A\}$
Disambiguation of a variable V for a partial state p is a set of facts from V consistent with p given a set of mutexes.

Variables:
- $\text{dom}(V_1) = \{A, B, C\}$
- $\text{dom}(V_2) = \{X, Y, Z\}$
- $\text{dom}(V_3) = \{1, 2, 3\}$

Mutexes:
- $\{V_1=A, V_2=X\}$
- $\{V_1=A, V_2=Z\}$
- $\{V_2=Y, V_3=2\}$
- $\{V_2=Y, V_3=3\}$

Partial state: $p = \{V_1=A\}$
Disambiguation of a variable V for a partial state p is a set of facts from V consistent with p given a set of mutexes.

Variables:
- $\text{dom}(V_1) = \{A, B, C\}$
- $\text{dom}(V_2) = \{X, Y, Z\}$
- $\text{dom}(V_3) = \{1, 2, 3\}$

Mutexes:
- $\{V_1=A, V_2=X\}$
- $\{V_1=A, V_2=Z\}$
- $\{V_2=Y, V_3=2\}$
- $\{V_2=Y, V_3=3\}$

Partial state: $p = \{V_1=A\}$
Disambiguation of a variable V for a partial state p is a set of facts from V consistent with p given a set of mutexes.

Variables:
- $\text{dom}(V_1) = \{A, B, C\}$
- $\text{dom}(V_2) = \{X, Y, Z\}$
- $\text{dom}(V_3) = \{1, 2, 3\}$

Mutexes:
- $\{V_1=A, V_2=X\}$
- $\{V_1=A, V_2=Z\}$
- $\{V_2=Y, V_3=2\}$
- $\{V_2=Y, V_3=3\}$

Partial state: $p = \{V_1=A\}$
Disambiguation of a variable V for a partial state p is a set of facts from V consistent with p given a set of mutexes.

Variables:
- $\text{dom}(V_1) = \{A, B, C\}$
- $\text{dom}(V_2) = \{X, Y, Z\}$
- $\text{dom}(V_3) = \{1, 2, 3\}$

Mutexes:
- $\{V_1=A, V_2=X\}$
- $\{V_1=A, V_2=Z\}$
- $\{V_2=Y, V_3=2\}$
- $\{V_2=Y, V_3=3\}$

Partial state: $p = \{V_1=A\} \rightarrow \{V_1=A, V_2=Y, V_3=1\}$
A potential function is a function $P : \mathcal{F} \mapsto \mathbb{R}$.

A potential heuristic for P maps each reachable state s to the sum of potentials of facts in s, i.e., $h^P(s) = \sum_{f \in s} P(f)$.

Goal awareness
For every goal state s_G:

$$\sum_{f \in s_G} P(f) \leq 0$$

Consistency
For every operator o and every reachable state s where o is applicable:

$$\sum_{f \in s} P(f) - \sum_{f \in o[s]} P(f) \leq c(o)$$
Disambiguation of Goal Specification

<table>
<thead>
<tr>
<th>Variables:</th>
<th>Mutexes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{dom}(V_1) = {A, B, C}$</td>
<td></td>
</tr>
<tr>
<td>$\text{dom}(V_2) = {X, Y, Z}$</td>
<td></td>
</tr>
<tr>
<td>$\text{dom}(V_3) = {1, 2, 3}$</td>
<td></td>
</tr>
</tbody>
</table>

Goal specification: $G = \{V_1=A\}$
Disambiguation of Goal Specification

<table>
<thead>
<tr>
<th>Variables:</th>
<th>Mutexes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>dom(V_1) = {A, B, C}</td>
<td></td>
</tr>
<tr>
<td>dom(V_2) = {X, Y, Z}</td>
<td></td>
</tr>
<tr>
<td>dom(V_3) = {1, 2, 3}</td>
<td></td>
</tr>
</tbody>
</table>

Goal specification: $G = \{V_1=A\}$

$$P(V_1=A) + \max_{v \in \text{dom}(V_2)} P(V_2=v) + \max_{v \in \text{dom}(V_3)} P(V_3=v) \leq 0$$
Disambiguation of Goal Specification

Variables:
\[\text{dom}(V_1) = \{ A, B, C \} \]
\[\text{dom}(V_2) = \{ X, Y, Z \} \]
\[\text{dom}(V_3) = \{ 1, 2, 3 \} \]

Mutexes:

Goal specification: \(G = \{ V_1 = A \} \)

\[
P(V_1 = A) + \max_{v \in \text{dom}(V_2)} P(V_2 = v) + \max_{v \in \text{dom}(V_3)} P(V_3 = v) \leq 0
\]
Disambiguation of Goal Specification

<table>
<thead>
<tr>
<th>Variables:</th>
<th>Mutexes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{dom}(V_1) = {A, B, C})</td>
<td>(\text{dom}(V_2) = {X, Y, Z})</td>
</tr>
<tr>
<td>(\text{dom}(V_2) = {X, Y, Z})</td>
<td>(\text{dom}(V_3) = {1, 2, 3})</td>
</tr>
</tbody>
</table>

Goal specification: \(G = \{V_1 = A\} \)

\[
P(V_1 = A) + \max_{v \in \text{dom}(V_2)} P(V_2 = v) + \max_{v \in \text{dom}(V_3)} P(V_3 = v) \leq 0
\]
Disambiguation of Goal Specification

Variables:
\[
\begin{align*}
\text{dom}(V_1) &= \{A, B, C\} \\
\text{dom}(V_2) &= \{X, Y, Z\} \\
\text{dom}(V_3) &= \{1, 2, 3\}
\end{align*}
\]

Mutexes:
\[
\begin{align*}
\{V_1=A, V_2=X\} \\
\{V_1=A, V_2=Z\} \\
\{V_2=Y, V_3=3\}
\end{align*}
\]

Goal specification: \(G = \{V_1=A\} \)
Disambiguation of Goal Specification

Variables:
- \(\text{dom}(V_1) = \{A, B, C\} \)
- \(\text{dom}(V_2) = \{X, Y, Z\} \)
- \(\text{dom}(V_3) = \{1, 2, 3\} \)

Mutexes:
- \(\{V_1=A, V_2=X\} \)
- \(\{V_1=A, V_2=Z\} \)
- \(\{V_2=Y, V_3=3\} \)

Goal specification: \(G = \{V_1=A\} \)

\[
P(V_1=A) + P(V_2=Y) + \max(P(V_3=1), P(V_3=2)) \leq 0
\]
Disambiguation of Goal Specification

Variables:
- $\text{dom}(V_1) = \{A, B, C\}$
- $\text{dom}(V_2) = \{X, Y, Z\}$
- $\text{dom}(V_3) = \{1, 2, 3\}$

Mutexes:
- $\{V_1 = A, V_2 = X\}$
- $\{V_1 = A, V_2 = Z\}$
- $\{V_2 = Y, V_3 = 3\}$

Goal specification: $G = \{V_1 = A\}$

\[P(V_1 = A) + P(V_2 = Y) + \text{max}(P(V_3 = 1), P(V_3 = 2)) \leq 0 \]
Disambiguation of Goal Specification

Variables:
- \(\text{dom}(V_1) = \{A, B, C\} \)
- \(\text{dom}(V_2) = \{X, Y, Z\} \)
- \(\text{dom}(V_3) = \{1, 2, 3\} \)

Mutexes:
- \(\{V_1 = A, V_2 = X\} \)
- \(\{V_1 = A, V_2 = Z\} \)
- \(\{V_2 = Y, V_3 = 3\} \)

Goal specification: \(G = \{V_1 = A\} \)

\[
P(V_1 = A) + P(V_2 = Y) + \max(P(V_3 = 1), P(V_3 = 2)) \leq 0
\]
Disambiguation of Goal Specification

Variables:
- \(\text{dom}(V_1) = \{A, B, C\} \)
- \(\text{dom}(V_2) = \{X, Y, Z\} \)
- \(\text{dom}(V_3) = \{1, 2, 3\} \)

Mutexes:
- \(\{V_1=A, V_2=X\} \)
- \(\{V_1=A, V_2=Z\} \)
- \(\{V_2=Y, V_3=3\} \)

Goal specification: \(G = \{V_1=A\} \)

\[
P(V_1=A) + P(V_2=Y) + \max(P(V_3=1), P(V_3=2)) \leq 0
\]
Disambiguation of Goal Specification

Variables:
- $\text{dom}(V_1) = \{A, B, C\}$
- $\text{dom}(V_2) = \{X, Y, Z\}$
- $\text{dom}(V_3) = \{1, 2, 3\}$

Mutexes:
- $\{V_1=A, V_2=X\}$
- $\{V_1=A, V_2=Z\}$
- $\{V_2=Y, V_3=3\}$

Goal specification: $G = \{V_1=A\}$

$P(V_1=A) + P(V_2=Y) + \max(P(V_3=1), P(V_3=2)) \leq 0$
Potential Heuristics with Disambiguation

<table>
<thead>
<tr>
<th></th>
<th>Init</th>
<th>All</th>
<th>Div_{1k}</th>
<th>\hat{S}_{1k}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>D</td>
<td>N</td>
<td>D</td>
</tr>
<tr>
<td>Coverage</td>
<td>921</td>
<td>938</td>
<td>903</td>
<td>927</td>
</tr>
<tr>
<td></td>
<td>937</td>
<td>961</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Potential Heuristics with Disambiguation

```
N-Init
1
10
10^2
10^3
D-Init
```

![Graph showing the relationship between D-Init and N-Init](image)

<table>
<thead>
<tr>
<th></th>
<th>Init</th>
<th>All</th>
<th>Div_{1k}</th>
<th>S_{1k}</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>921</td>
<td>903</td>
<td>932</td>
<td>937</td>
</tr>
<tr>
<td>D</td>
<td>938</td>
<td>927</td>
<td>957</td>
<td>961</td>
</tr>
</tbody>
</table>

Coverage

October 15, 2020
Potential Heuristics with Disambiguation

<table>
<thead>
<tr>
<th></th>
<th>Init</th>
<th>All</th>
<th>Div_{1k}</th>
<th>\hat{S}_{1k}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>D</td>
<td>N</td>
<td>D</td>
</tr>
<tr>
<td>Coverage</td>
<td>921</td>
<td>938</td>
<td>903</td>
<td>927</td>
</tr>
</tbody>
</table>
Potential Heuristics with Disambiguation

<table>
<thead>
<tr>
<th></th>
<th>Init</th>
<th>All</th>
<th>Div_{1k}</th>
<th>S_{1k}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>D</td>
<td>N</td>
<td>D</td>
</tr>
<tr>
<td>Coverage</td>
<td>921</td>
<td>938</td>
<td>903</td>
<td>927</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Potential Heuristics with Disambiguation

Strengthening Potential Heuristics with Mutexes and Disambiguations

<table>
<thead>
<tr>
<th></th>
<th>Init_N</th>
<th>Init_D</th>
<th>All N</th>
<th>All D</th>
<th>$\text{Div}_{1k}N$</th>
<th>$\text{Div}_{1k}D$</th>
<th>$\hat{S}_{1k}N$</th>
<th>$\hat{S}_{1k}D$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage</td>
<td>921</td>
<td>938</td>
<td>903</td>
<td>927</td>
<td>932</td>
<td>957</td>
<td>937</td>
<td>961</td>
</tr>
</tbody>
</table>
Potential Heuristics with Disambiguation

![Graph showing the relationship between N-Init and D-Init coverage](image)

<table>
<thead>
<tr>
<th></th>
<th>Init</th>
<th>All</th>
<th>Div$_{1k}$</th>
<th>Š$_{1k}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>D</td>
<td>N</td>
<td>D</td>
</tr>
<tr>
<td>Coverage</td>
<td>921</td>
<td>938</td>
<td>903</td>
<td>927</td>
</tr>
</tbody>
</table>
Enforcing heuristic value for a state

We can always enforce a minimal heuristic value $h(s)$ for a specific state s by the constraint

$$\sum_{f \in s} P(f) \geq h(s)$$

Therefore, we can first compute the potential heuristic h^P_I for the initial state and then enforce its value for other objective function by the constraint:

$$\sum_{f \in I} P(f) \geq h^P_I(I)$$
Constraint on Initial State

Enforcing heuristic value for a state

We can always enforce a minimal heuristic value \(h(s) \) for a specific state \(s \) by the constraint

\[
\sum_{f \in s} P(f) \geq h(s)
\]

Therefore, we can first compute the potential heuristic \(h^p_I \) for the initial state and then enforce its value for other objective function by the constraint:

\[
\sum_{f \in I} P(f) \geq h^p_I(I)
\]

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>All+I</th>
<th>(\hat{\mathcal{S}}_{1k})</th>
<th>(\hat{\mathcal{S}}_{1k}+I)</th>
<th>lmc</th>
<th>ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage</td>
<td>903</td>
<td>927</td>
<td>964</td>
<td>1001</td>
<td>937</td>
<td>961</td>
</tr>
<tr>
<td></td>
<td>949</td>
<td>985</td>
<td>911</td>
<td>895</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Constraint on Initial State

Enforcing heuristic value for a state

We can always enforce a minimal heuristic value $h(s)$ for a specific state s by the constraint

$$\sum_{f \in s} P(f) \geq h(s)$$

Therefore, we can first compute the potential heuristic h_P^I for the initial state and then enforce its value for other objective function by the constraint:

$$\sum_{f \in I} P(f) \geq h_P^I(I)$$

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>All+I</th>
<th>\hat{S}_{1k}</th>
<th>\hat{S}_{1k}+I</th>
<th>lmc</th>
<th>ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage</td>
<td>903</td>
<td>927</td>
<td>964</td>
<td>1001</td>
<td>937</td>
<td>961</td>
</tr>
</tbody>
</table>
Constraint on Initial State

Enforcing heuristic value for a state

We can always enforce a minimal heuristic value $h(s)$ for a specific state s by the constraint

$$\sum_{f \in s} P(f) \geq h(s)$$

Therefore, we can first compute the potential heuristic h^p_I for the initial state and then enforce its value for other objective function by the constraint:

$$\sum_{f \in I} P(f) \geq h^p_I(I)$$

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>All+I</th>
<th>\hat{S}_{1k}</th>
<th>\hat{S}_{1k}+I</th>
<th>lmc</th>
<th>ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage</td>
<td>903</td>
<td>927</td>
<td>964</td>
<td>1001</td>
<td>949</td>
<td>985</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Constraint on Initial State

Enforcing heuristic value for a state

We can always enforce a minimal heuristic value $h(s)$ for a specific state s by the constraint

$$\sum_{f \in s} P(f) \geq h(s)$$

Therefore, we can first compute the potential heuristic h^P_I for the initial state and then enforce its value for other objective function by the constraint:

$$\sum_{f \in I} P(f) \geq h^P_I(I)$$

<table>
<thead>
<tr>
<th>All</th>
<th>All+I</th>
<th>\hat{S}_{1k}</th>
<th>$\hat{S}_{1k}+I$</th>
<th>lmc</th>
<th>ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>D</td>
<td>N</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coverage</td>
<td>903</td>
<td>927</td>
<td>964</td>
<td>1001</td>
<td>937</td>
</tr>
</tbody>
</table>
Enforcing heuristic value for a state

We can always enforce a minimal heuristic value $h(s)$ for a specific state s by the constraint:

$$\sum_{f \in s} P(f) \geq h(s)$$

Therefore, we can first compute the potential heuristic h^P_I for the initial state and then enforce its value for other objective function by the constraint:

$$\sum_{f \in I} P(f) \geq h^P_I(I)$$

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>All+I</th>
<th>Š1k</th>
<th>Š1k+I</th>
<th>lmc</th>
<th>ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>903</td>
<td>964</td>
<td>937</td>
<td>949</td>
<td>911</td>
<td>895</td>
</tr>
<tr>
<td>D</td>
<td>927</td>
<td>1001</td>
<td>961</td>
<td>985</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Enforcing heuristic value for a state

We can always enforce a minimal heuristic value $h(s)$ for a specific state s by the constraint

$$\sum_{f \in s} P(f) \geq h(s)$$

Therefore, we can first compute the potential heuristic h^P_I for the initial state and then enforce its value for other objective function by the constraint:

$$\sum_{f \in I} P(f) \geq h^P_I(I)$$

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>All+I</th>
<th>\hat{S}_{1k}</th>
<th>$\hat{S}_{1k}+I$</th>
<th>lmc</th>
<th>ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage</td>
<td>903</td>
<td>927</td>
<td>964</td>
<td>1001</td>
<td>937</td>
<td>961</td>
</tr>
</tbody>
</table>

Constraint on Initial State

Strengthening Potential Heuristics with Mutexes and Disambiguations

October 15, 2020 8 / 9
Disambiguation with mutexes is relatively cheap way to improve potential heuristics.

Mutexes can be used to a more accurate estimation of the number of reachable states (details in the paper).

Adding constraint for the initial state with the maximization of objective function describing average state brings best of both methods.