A Novel Lookahead Strategy for Delete Relaxation Heuristics in Greedy Best-First Search

Maximilian Fickert

ICAPS 2020

SAARBRÜCKEN GRADUATE SCHOOL OF COMPUTER SCIENCE

Classical Planning (FDR)

- Variables: *at*, *fuel*
- Actions:

drive(x, y):

refuel:

- $pre = \{at = x, fuel = 1\}$ $pre = \emptyset$
- $eff = \{at = y, fuel = 0\}$ $eff = \{fuel = 1\}$
- Initial State: $\{at = A, fuel = 1\}$
- Goal: $\{at = C\}$

Variables accumulate values instead of switching between them

Relaxed plan: drive(A, B), drive(B, C)

The $h^{\rm FF}$ heuristic yields the length of a (non-optimal) relaxed plan

A B C Relaxed plan: drive(A, B), drive(B, C)

The relaxed plan provides more information than just a heuristic value:

- Preferred operators (Hoffmann 2001, Helmert 2006)
- Generate lookahead state using executable prefix (YAHSP; Vidal 2004, 2011)
- Relaxed subgoal counting (BFWS; Lipovetzky and Geffner, 2017)

At each expansion of a state s:

- 1. Initialize relaxed subgoal counting heuristic $h^{\rm rsc}$ with the relaxed plan for s
- 2. Perform a bounded lookahead search with $h^{\it rsc}$
- 3. Return the best state s^\prime according to $h^{\it rsc}$
- 4. Insert s' at the front of the open list if $h^{\mathsf{FF}}(s') < h^{\mathsf{FF}}(s)$, otherwise discard it

VisitAll (30×30)

Expansion 1 Relaxed Plan

Expansion 1 Lookahead Search Tree

Expansion 1 Lookahead Path

Expansion 2 Lookahead Path

Expansion 3 Lookahead Path

Expansion 4 Lookahead Path

Expansion 5 Lookahead Path

Take some delete information into account:

- Red-Black Planning (Katz and Hoffmann 2014, Domshlak et al. 2015)
 → un-relax *fuel* variable
- Explicit Conjunctions (Keyder et al. 2014, Fickert et al. 2016)
 → achieve *fuel* = 1 and *at* = *B* at the same time

49 IPC domains, 30min timeout, 4GB memory Lazy GBFS with dual-queue for preferred operators

-	RSL	YAHSP	
1494	1518	1529	
1508	1513	1541	
1498	1577	1603	
_	1665	1573	
	- 1494 1508 1498 -	 - RSL 1494 1518 1508 1513 1498 1577 - 1665 	

	GBFS-RSL	LAMA	$BFWS(f_5)$	Dual-BFWS	Mercury	MERWIN	Coverage
GBFS-RSL	_	20	20	16	15	13	1665
LAMA	6	—	19	10	5	4	1574
$BFWS(f_5)$	8	15	_	5	11	9	1530
Dual-BFWS	9	18	22	_	12	10	1623
Mercury	9	14	19	13	_	2	1605
MERWIN	10	17	20	14	12	_	1634

- New lookahead strategy for GBFS using relaxed subgoals
- Beats state-of-the-art planners with $h^{C\rm FF}$ and online refinement
- Lookahead strategy is fairly general, and could be used with other methods that provide subgoals or abstract plans