Incremental Search for Counterexample-Guided Cartesian Abstraction Refinement

Jendrik Seipp, Samuel von Allmen, Malte Helmert

October 28, 2020

University of Basel
In a Nutshell

• optimal classical planning
• A* search + abstraction heuristic
• counterexample-guided Cartesian abstraction refinement
• bottleneck: find shortest path
• incremental search: 1000x speedup
Counterexample-Guided Abstraction Refinement

CEGAR

compute initial abstraction

until TERMINATE():
 find shortest path in abstraction
 if there is no path:
 return unsolvable
 find flaw in path
 if there is no flaw:
 return plan
 refine abstraction for flaw

return abstraction
Example Task

- load-in-A
- unload-in-A
- drive
- unload-in-B
- load-in-B
- drive

3/10
Abstraction Refinement

drive, (un)load-in-A, (un)load-in-B
Abstraction Refinement

drive, (un)load-in-A

unload-in-B

drive

load-in-B
Abstraction Refinement

drive

load-in-A

unload-in-B

load-in-B

unload-in-A
Bottleneck: Find Shortest Path

- Dijkstra’s algorithm
- A* search
- search times grow
Bottleneck: Find Shortest Path

• Dijkstra’s algorithm
• A* search
• search times grow
→ incremental search
Incremental Search

- dynamic shortest path
- add/remove transitions
- increase/decrease weights
- fixed set of states
Two-step Refinement for CEGAR

before splitting v

copy v

prune transitions
INCREASE (Frigioni et al., 2000)

- increasing weights, removing transitions
- shortest path tree
- algorithm:
 - reconnect ancestor states, mark rest dirty
 - run Dijkstra on dirty states
• CEGAR bottleneck: find shortest paths
• cast as dynamic shortest path problem
• drastic speedup