Hierarchical Graph Traversal for Aggregate k Nearest Neighbors Search in Road Networks

ICAPS 2020 SEMINAR

PRESENTER: TENINDRA ABEYWICKRAMA
CO-AUTHORS: MUHAMMAD AAMIR CHEEMA, SABINE STORANDT
Background: Road Network Graph

- Input: Road network graph $G = (V, E)$
- Vertex set V: Road intersections
- Edge set E: Road segments
- Each edge has weight: e.g. travel time

Background: k Nearest Neighbour (kNN) Queries

- **Input:** Object set $O \subseteq V$ (e.g. all restaurants)
- **Input:** Agent location $q \in V$ (e.g. a diner)
- **kNN Query:** What is the nearest object to q?
 - *By Euclidean Distance:* o_2
 - *By Network Distance:* o_1
- **More accurate + versatile**
Our Problem: Aggregate k Nearest Neighbours (AkNN)

- AkNN: Find the nearest object to *multiple* agents
- Example: Three friends (agents) want to meet at a McDonalds (objects). Which object to meet at?
Our Problem: AkNN

- Input: Aggregate Function (e.g. SUM), Agent Set \(Q \subseteq V \)
- Aggregate individual distances from each agent
- Rank objects by their aggregate score

\[
Agg_Score(o_2) = Agg_Function(d(q_1, o_2), d(q_2, o_2), d(q_3, o_2))
\]
Our Problem: AkNN

- Still using network distance for accuracy/versatility
- Example: Which McDonalds minimises the SUM of travel times over all diners?

Sources: Google Maps, McDonalds, Flaticon.com
Motivation

• Inefficient to compute distance to every object
• Typical Solution: heuristically retrieve likely candidates until all results found
• But existing heuristics are either:
 • (a) borrowed from kNN => not suitable for AkNN
 • (b) not accurate enough for network distance
Expansion Heuristics

• Borrowed from kNN search heuristics: expand from each query vertex
• But best AkNN candidates unlikely to be near any one query vertex
Hierarchical Search Heuristic

- Divide space to group objects => recursively
- Search “promising” regions top-down (recursively)
- Pinpoint best candidate anywhere in space
Hierarchical Search

• How do we decide which regions are “promising”?
• Use lower-bound score for all objects in a region
• Past Work: R-tree + Euclidean distance lower-bound
• Not accurate for road network distance

Data structure needed for accurate hierarchical lower-bound search in graphs
Landmark Lower-Bounds

- Precompute distances from *landmark* vertices
- Use triangle inequality to compute lower-bound
- Only allows small numbers of landmarks (space cost)
- Not suitable for hierarchical search

\[d(q, o) \leq |d(l, o) - d(l, q)| \]

Choose tightest LLB over a set of multiple landmarks
Compacted-Object Landmark Tree (COLT) Index

- Partition graph recursively => subgraph tree
- Choose localised landmarks in every subgraph
- Compact based on object set O

![Diagram of COLT Index]

S_0 S_1 S_2

S_{1A} S_{1B} S_{2A} S_{2B}
COLT

- Non-leaf + leaf nodes stores
 - M^{-}: min distance to any object in subgraph from landmark
 - M^{+}: max distance to any object in subgraph from landmark
- Enables accurate lower-bound for any tree node

\[
LB_{l_i}(n_C, q) = \begin{cases}
 d(l_i, q) - M^{+} & \text{if } d(l_i, q) \geq M^{+} \\
 M^{-} - d(l_i, q) & \text{if } d(l_i, q) \leq M^{-} \\
 0 & \text{else}
\end{cases}
\]
Hierarchical Traversal in COLT

- Top-down search from root node
- Compute lower-bound for child using equation
- Recursively evaluate child with best score
Hierarchical Traversal in COLT

- Leaf nodes store Object Distance List
- Find object with minimum aggregate lower-bound
- Interestingly common functions preserve convexity!
- Easily found using modified binary search

<table>
<thead>
<tr>
<th>Object</th>
<th>o_4</th>
<th>o_2</th>
<th>o_5</th>
<th>o_1</th>
<th>o_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>12</td>
</tr>
</tbody>
</table>
Experimental Setup

• Dataset: US Road Network Graph from DIMACS
 • $|V| = 23,947,347$ vertices, $|E| = 57,708,624$ edges
 • Real-World POIs from OSM for US

• Comparison against IER and NVD
 • IER: hierarchical search using Euclidean heuristic
 • NVD: state-of-the-art expansion heuristic
Query Time: Real-World POIs

- COLT up to an order of magnitude faster!
- COLT performs better on dense POI sets
- Heuristics is less important on sparse POI sets

![Graph showing query time for different POI sets](image)

Figure 4: Performance on different real-world POI sets
Sensitivity Analysis

• COLT maintains improvement for
 • Varying parameters (k, number of agents)
 • Varying aggregate functions (MAX, SUM)
 • Heuristic efficiency metrics

• Comes at a lightweight pre-processing cost

Figure 5: Performance for max function
Thank You!

Questions?