
Learning Domain-Independent
Heuristics over Hypergraphs

William Shen, Felipe Trevizan, Sylvie Thiébaux

The Australian National University

22

Learn domain-independent heuristics
● Learn entirely from scratch

○ Do not use hand-crafted features
■ e.g. Learning Generalized Reactive Policies using Deep Neural Networks

[Groshev et al. 2018]

○ Do not rely on existing heuristics as input features
■ e.g. Action Schema Networks: Generalised Policies with Deep Learning

[Toyer et. al 2017]

○ Do not learn an improvement for an existing heuristic
■ e.g. Learning heuristic functions from relaxed plans [Yoon et al. 2006]

33

Learn domain-independent heuristics
● Generalise to:

○ different initial states, goals
○ different number of objects
○ different domains

■ domains unseen during training

domain-independent!

STRIPS

● F is the set of propositions
● A is the set of actions

○ Each action has preconditions, add-effects &
delete-effects

● I ⊆ F is the initial state
● G ⊆ F is the goal states
● c is the cost function

44

unstack(1, 2)
 PRE: on(1, 2), clear(1) ...
 EFF: holding(1) clear(2)
 ¬on(1, 2) ...

unstack(1, 2)

55

Hypergraph for the delete relaxation
● Hyperedge: edge that joins any number of vertices

The delete-relaxation P
+ of problem P

can be represented by a hypergraph

Delete-Relaxation: ignore delete
effects for each action

66

hadd heuristic

● Estimate cost of goal as
sum of costs of each
proposition

● Assumes achieving each
proposition is
independent
○ Overcounting
○ Non-admissible!

77

hmax heuristic

● Estimate cost of goal as
the most expensive goal
proposition

● Admissible but not as
informative as hadd

88

Learning Heuristics over Hypergraphs
● Learn a function ⊕ which better approximates shortest paths

99

Learning Heuristics over Hypergraphs

● Learn function h: hypergraph → R

1010

Hypergraph Networks (HGN)
● Our generalisation of Graph Networks [Battaglia et al. 2018] to

hypergraphs

● Hypergraph Network (HGN) Block
○ Powerful and flexible building block
○ Hypergraph-to-Hypergraph mapping
○ Uses message passing to aggregate and update features with

update/aggregation functions

1111

Hypergraph Networks (HGN)

Figure from Battaglia et al. 2018Analogous to Message Passing

12

STRIPS-HGN

13

STRIPS-HGN

Input features
Hypergraph structure

14

STRIPS-HGN

Encoder Block

15

STRIPS-HGN Encoder

Latent proposition
and action features

16

STRIPS-HGN Encoder

Latent proposition
and action features

Multilayer
Perceptrons

17

STRIPS-HGN

Initial Latent
features

18

STRIPS-HGN

Initial Latent
features

Recurrent Latent
features

19

STRIPS-HGN Core Message Passing
Block

Propagates
information through

the hypergraph!

20

STRIPS-HGN Processing

Updated proposition
and action features

Latent heuristic value!

21

STRIPS-HGN

Updated Latent
features

22

STRIPS-HGN Repeat!

23

STRIPS-HGN

24

STRIPS-HGN

Updated Latent
features

25

STRIPS-HGN

Decoder Block

26

STRIPS-HGN Decoder

Decoded heuristic
value (real number)

2727

Training a STRIPS-HGN
● Input Features - learning from scratch

○ Proposition:
[proposition in current state, proposition in goal state]

○ Action: [cost, #preconditions, #add-effects]

● Generate Training Data
○ Run an optimal planner for a set of training problems
○ Use the states encountered in the optimal plans
○ Aim to learn the optimal heuristic value

● Train using Gradient Descent, treat as regression problem

2828

Experimental Results
● Evaluate using A* Search

● Baseline Heuristics
○ hadd (inadmissible), hmax, blind and Landmark Cut (admissible)

● STRIPS-HGN: hHGN

○ Train and evaluate on a single CPU core
○ Run core block 10 times (i.e., M = 10)
○ Powerful generalisation but slower to compute

2929

Evaluation on domains we trained on
Training Testing

Zenotravel Gripper

10 small
Training

Problems

2-3 cities

3 small
Training

Problems

1-3 balls

● Train and evaluate a single network on 3 domains.

● Training time: 15 min

10 small
Training

Problems

4-5 blocks

Blocksworld Gripper

18 larger
Testing

Problems

4-20 balls

Blocksworld

100 larger
Testing

Problems

6-10 blocks

3030

Blocksworld (trained on)
Train on Zenotravel, Gripper & Blocksworld

95% confidence interval shown for hHGN over 10 repeated experiments.

3131

Gripper (trained on)
Train on Zenotravel, Gripper & Blocksworld

3232

Evaluation on domains we did not train on
Training Testing

Zenotravel Gripper Blocksworld

10 small
Training

Problems

2-3 cities

3 small
Training

Problems

1-3 balls

50 Testing
Problems

4-8 blocks

● Train a single network on 2 domains. Evaluate on new unseen domain.

● Training time: 10 min

3333

Blocksworld (not trained on)
Train on Zenotravel and Gripper only.

● Speeding up a STRIPS-HGN
○ Slow to evaluate - bottleneck
○ Optimise Hypergraph Networks implementation
○ Take advantage of multiple cores or use GPUs for parallelisation

● Improve Generalisation Performance
○ Use richer set of input features
○ Careful study of hyperparameter space, similar to [Ferber et al. 2020]

3434

Future Work

3535

Thanks!

