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Learn domain-independent heuristics
● Learn entirely from scratch

○ Do not use hand-crafted features
■ e.g. Learning Generalized Reactive Policies using Deep Neural Networks 

[Groshev et al. 2018]

○ Do not rely on existing heuristics as input features
■ e.g. Action Schema Networks: Generalised Policies with Deep Learning 

[Toyer et. al 2017]

○ Do not learn an improvement for an existing heuristic
■ e.g. Learning heuristic functions from relaxed plans [Yoon et al. 2006]



33

Learn domain-independent heuristics
● Generalise to:

○ different initial states, goals
○ different number of objects
○ different domains

■ domains unseen during training

domain-independent!



STRIPS

● F is the set of propositions
● A is the set of actions

○ Each action has preconditions, add-effects & 
delete-effects

● I ⊆ F is the initial state
● G ⊆ F is the goal states
● c is the cost function
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unstack(1, 2)
  PRE: on(1, 2), clear(1) ...
  EFF: holding(1) clear(2) 
          ¬on(1, 2) ...

unstack(1, 2)
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Hypergraph for the delete relaxation
● Hyperedge: edge that joins any number of vertices

The delete-relaxation P 
+ of problem P 

can be represented by a hypergraph

Delete-Relaxation: ignore delete 
effects for each action
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hadd heuristic

● Estimate cost of goal as 
sum of costs of each 
proposition

● Assumes achieving each 
proposition is 
independent
○ Overcounting
○ Non-admissible!
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hmax heuristic

● Estimate cost of goal as 
the most expensive goal 
proposition

● Admissible but not as 
informative as hadd
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Learning Heuristics over Hypergraphs
● Learn a function ⊕ which better approximates shortest paths
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Learning Heuristics over Hypergraphs

● Learn function h: hypergraph → R
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Hypergraph Networks (HGN)
● Our generalisation of Graph Networks [Battaglia et al. 2018] to 

hypergraphs

● Hypergraph Network (HGN) Block
○ Powerful and flexible building block
○ Hypergraph-to-Hypergraph mapping
○ Uses message passing to aggregate and update features with 

update/aggregation functions



1111

Hypergraph Networks (HGN)

Figure from Battaglia et al. 2018Analogous to Message Passing
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STRIPS-HGN
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STRIPS-HGN

Input features
Hypergraph structure
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STRIPS-HGN

Encoder Block
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STRIPS-HGN Encoder

Latent proposition 
and action features
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STRIPS-HGN Encoder

Latent proposition 
and action features

Multilayer 
Perceptrons
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STRIPS-HGN

Initial Latent 
features
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STRIPS-HGN

Initial Latent 
features

Recurrent Latent 
features
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STRIPS-HGN Core Message Passing 
Block

Propagates 
information through 

the hypergraph!
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STRIPS-HGN Processing

Updated proposition 
and action features

Latent heuristic value!
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STRIPS-HGN

Updated Latent 
features
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STRIPS-HGN Repeat!
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STRIPS-HGN
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STRIPS-HGN

Updated Latent 
features
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STRIPS-HGN

Decoder Block
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STRIPS-HGN Decoder

Decoded heuristic 
value (real number)
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Training a STRIPS-HGN
● Input Features - learning from scratch

○ Proposition: 
[proposition in current state, proposition in goal state]

○ Action: [cost, #preconditions, #add-effects]

● Generate Training Data
○ Run an optimal planner for a set of training problems
○ Use the states encountered in the optimal plans
○ Aim to learn the optimal heuristic value

● Train using Gradient Descent, treat as regression problem
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Experimental Results
● Evaluate using A* Search

● Baseline Heuristics 
○ hadd (inadmissible), hmax, blind and Landmark Cut (admissible)

● STRIPS-HGN:  hHGN

○ Train and evaluate on a single CPU core
○ Run core block 10 times (i.e., M = 10)
○ Powerful generalisation but slower to compute
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Evaluation on domains we trained on
Training Testing

Zenotravel Gripper

10 small 
Training 

Problems

2-3 cities

3 small 
Training 

Problems

1-3 balls

● Train and evaluate a single network on 3 domains. 

● Training time: 15 min

10 small 
Training 

Problems

4-5 blocks

Blocksworld Gripper

18 larger 
Testing 

Problems

4-20 balls

Blocksworld

100 larger 
Testing 

Problems

6-10 blocks
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Blocksworld (trained on)
Train on Zenotravel, Gripper & Blocksworld

95% confidence interval shown for hHGN over 10 repeated experiments.
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Gripper (trained on)
Train on Zenotravel, Gripper & Blocksworld
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Evaluation on domains we did not train on
Training Testing

Zenotravel Gripper Blocksworld

10 small 
Training 

Problems

2-3 cities

3 small 
Training 

Problems

1-3 balls

50 Testing 
Problems 

4-8 blocks

● Train a single network on 2 domains. Evaluate on new unseen domain.

● Training time: 10 min
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Blocksworld (not trained on)
Train on Zenotravel and Gripper only.



● Speeding up a STRIPS-HGN
○ Slow to evaluate - bottleneck
○ Optimise Hypergraph Networks implementation
○ Take advantage of multiple cores or use GPUs for parallelisation

● Improve Generalisation Performance
○ Use richer set of input features
○ Careful study of hyperparameter space, similar to [Ferber et al. 2020]
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Future Work
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Thanks!


