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What is decoding?



What is decoding?

Decoding: finding the most likely explanation to some evidence.

Basic reasoning tool in:

• ”Plan recognition as Planning” (Ramirez and Geffner, 2009).

• ”Diagnosis as Planning Revisited” (Sohrabi et al., 2010).

• ”Counterplanning using Goal Recognition and Landmarks” (Pozanco et al. 2018)

• ”Learning action models with minimal observability” (Aineto et al., 2019)

Contributions:

• Formalization of the decoding problem within a probabilistic framework.

• Extension of decoding to support sensor models.
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Problem Definition



Probabilistic Framework

Mp τ O

Ms

Planning Model Trajectory Observations

Sensor Model

Synthesis Sensing

7



Sensor Model and Observations

A sensor model Ms = 〈X ,Y ,Φ〉

• X are the state variables.

• Y are the observable variables.

• Φ is the set of sensing functions fi : Ci × Yi → [0, 1]

• exhaustive (
⋃

c∈Ci
Sc = S), and

• exclusive (Sc ∩ Sc′ = ∅,∀c , c ′ ∈ Ci )
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A sensor model Ms = 〈X ,Y ,Φ〉

• X are the state variables.

• Y are the observable variables.

• Φ is the set of sensing functions fi : Ci × Yi → [0, 1]

• exhaustive (
⋃

c∈Ci
Sc = S), and

• exclusive (Sc ∩ Sc′ = ∅,∀c , c ′ ∈ Ci )

Blindspots example

Clear tile (x ≥ 2): floc(atx ,y , loc = (x , y)) = 0.9, floc(atx ,y , loc = ε) = 0.1

Blindspot tile (x ≤ 1): floc(atx ,y , loc = ε) = 1
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Sensor Model and Observations

A sensor model Ms = 〈X ,Y ,Φ〉

• X are the state variables.

• Y are the observable variables.

• Φ is the set of sensing functions fi : Ci × Yi → [0, 1]

• exhaustive (
⋃

c∈Ci
Sc = S), and

• exclusive (Sc ∩ Sc′ = ∅,∀c , c ′ ∈ Ci )

An observation o = 〈Y1 = w1, . . . ,Y|Y | = w|Y |〉 is a full assignment of Y .
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The Observation Decoding Problem

An observation decoding problem is a triplet D = 〈Mp,Ms ,O〉 where:

• Mp = 〈X ,A〉 is a planning model,

• Ms = 〈X ,Y ,Φ〉 is a sensor model, and

• O = 〈o0, o1, . . . , om〉 is an input observation sequence.

The solution to D = 〈Mp,Ms ,O〉 is the most likely trajectory τ∗ defined as

τ∗ = arg max
τ∈T

P(O, τ |Mp,Ms),
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Synthesis and Sensing Probabilities

τ∗ = arg maxτ∈T P(O, τ |Mp,Ms) = arg maxτ∈T P(τ |Mp)P(O|τ,Ms)

Mp τ O

Ms

Planning Model Trajectory Observations

Sensor Model

Synthesis Sensing

Synthesis probability

The probability of generating τ with Mp:

P(τ |Mp) = P(s0)

|τ |∏
i=1

P(si |si−1,Mp), (1)

Sensing probability

The probability of perceiving O from τ :

P(O|τ,Ms) =

|τ |∏
i=1

P(oi |si ,Ms), (2)
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Observation decoding

via Classical Planning



Compilation

From probability maximization to cost minimization:

τ∗ = arg maxτ∈T P(O, τ |Mp,Ms) → τ∗ = arg minτ∈T − logP(O, τ |Mp,Ms)

Compile D = 〈Mp,Ms ,O〉 to a planning problem P ′ = 〈F ′,A′, I ′,G ′〉

such that A′ = At ∪ Ae where:

• transition actions At are the cost-normalized versions of A

• sensing actions Ae to process an observation
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Compilation

From probability maximization to cost minimization:

τ∗ = arg maxτ∈T P(O, τ |Mp,Ms) → τ∗ = arg minτ∈T − logP(O, τ |Mp,Ms)

Compile D = 〈Mp,Ms ,O〉 to a planning problem P ′ = 〈F ′,A′, I ′,G ′〉

If π is a solution plan for P ′ then:

• cost(πt) = − log P(τπ|Mp).

• cost(πe) = − log P(O|τπ,Mp).

• cost(π) = − logP(O, τπ|Mp,Ms).
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Sensing Actions

Ae contains a sensek action for each observation ok ∈ O

• Implement an acceptor automaton for trajectories that satisfy the observation.

• Accumulate − logP(O|τ,Ms)

sensed0 sensed1 ... sensedK-1 sensedKstart

sense1 senseK

guard(sensek) := P(ok |si ,Ms) > 0

reset(sensek) := x+ = x − logP(ok |si ,Ms)
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Sensing Actions

O = (〈loc = (0, 2)〉, 〈loc = (1, 2)〉, 〈loc = (4, 2)〉

pre(sense2) sensed1

eff(sense2) sensed2∧
when (at x1 y2)

increase total cost − log (0.9)

when (not (at x1 y2))

(deadend)
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Experimental Evaluation



Setup

Evaluate the effectiveness of using a sensor model for decoding.

• ODN : optimal plan that satisfies the observation.

• ODS : the approach presented here.

Metric: plan diversity1

δα(πi , πj) =
|Si − Sj |
|Si |+ |Sj |

+
|Sj − Si |
|Si |+ |Sj |

1”Domain independent approaches for finding diverse plans” (Srivastava et al., 2007).
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Results

Domain H L ODS ODN

100 0 0.03 0.18

Blindspots 80 20 0.08 0.20

60 40 0.11 0.17

100 0 0 0.58

Intrusion 80 20 0.07 0.18

60 40 0.13 0.14

100 0 0 0.34

Blocks 2h 80 20 0.05 0.27

60 40 0.07 0.26

100 0 0 0.58

Office 80 20 0.23 0.38

60 40 0.16 0.23

H: Observability of the high observability region

L: Observability of the low observability region

ODS : δα(π, πS )

ODN : δα(π, πN)
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Conclusions



Conclusions

• Formalization of the decoding problem within a probabilistic framework.

• Extension of decoding to support sensor models.

• Unifying probabilistic framework (future work).
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