Observation Decoding with Sensor Models: Recognition Tasks via Classical Planning

Diego Aineto, Sergio Jimenez, Eva Onaindia October 16, 2020

Universitat Politècnica de València

What is decoding?

Decoding: finding the most likely explanation to some evidence.

Decoding: finding the most likely explanation to some evidence.

Basic reasoning tool in:

- "Plan recognition as Planning" (Ramirez and Geffner, 2009).
- "Diagnosis as Planning Revisited" (Sohrabi et al., 2010).
- "Counterplanning using Goal Recognition and Landmarks" (Pozanco et al. 2018)
- "Learning action models with minimal observability" (Aineto et al., 2019)

Decoding: finding the most likely explanation to some evidence.

Basic reasoning tool in:

- "Plan recognition as Planning" (Ramirez and Geffner, 2009).
- "Diagnosis as Planning Revisited" (Sohrabi et al., 2010).
- "Counterplanning using Goal Recognition and Landmarks" (Pozanco et al. 2018)
- "Learning action models with minimal observability" (Aineto et al., 2019)

Contributions:

- Formalization of the decoding problem within a probabilistic framework.
- Extension of decoding to support sensor models.

$$O = (\langle \textit{loc} = (0,2) \rangle, \langle \textit{loc} = (1,2) \rangle, \langle \textit{loc} = (4,2) \rangle$$

 $O = (\langle loc = (0,2) \rangle, \langle loc = (1,2) \rangle, \langle loc = (4,2) \rangle$ $\tau_1 = (\langle (at \times 0 y2) \rangle, \langle (at \times 1 y2) \rangle, \langle (at \times 2 y2) \rangle, \langle (at \times 3 y2) \rangle, \langle (at \times 4 y2) \rangle)$

Motivating example

 $\tau_1 = (\langle (\textit{at} \times 0 \text{ } y2) \rangle, \langle (\textit{at} \times 1 \text{ } y2) \rangle, \langle (\textit{at} \times 2 \text{ } y2) \rangle, \langle (\textit{at} \times 3 \text{ } y2) \rangle, \langle (\textit{at} \times 4 \text{ } y2) \rangle)$

Motivating example

 $O = (\langle loc = (0,2) \rangle, \langle loc = (1,2) \rangle, \langle loc = (4,2) \rangle$

 $\tau_2 = (\langle (at \times 0 \ y2) \rangle, \langle (at \times 1 \ y2) \rangle, \langle (at \times 1 \ y1) \rangle, \langle (at \times 2 \ y1) \rangle, \langle (at \times 3 \ y1) \rangle, \langle (at \times 4 \ y1) \rangle, \langle (at \times 4 \ y2) \rangle)$

Problem Definition

Sensor Model

Sensor Model and Observations

A sensor model $\mathcal{M}_s = \langle X, Y, \Phi \rangle$

- X are the state variables.
- Y are the observable variables.
- Φ is the set of sensing functions $f_i : C_i \times Y_i \rightarrow [0, 1]$
 - exhaustive $(\bigcup_{c \in C_i} S_c = S)$, and
 - exclusive $(S_c \cap S_{c'} = \emptyset, \forall c, c' \in C_i)$

Sensor Model and Observations

A sensor model $\mathcal{M}_{s} = \langle X, Y, \Phi \rangle$

- X are the state variables.
- Y are the observable variables.
- Φ is the set of sensing functions $f_i : C_i \times Y_i \rightarrow [0, 1]$
 - exhaustive $(\bigcup_{c \in C_i} S_c = S)$, and
 - exclusive $(S_c \cap S_{c'} = \emptyset, \forall c, c' \in C_i)$

Blindspots example

Clear tile
$$(x \ge 2)$$
: $f_{loc}(at_{x,y}, loc = (x, y)) = 0.9$, $f_{loc}(at_{x,y}, loc = \epsilon) = 0.1$
Blindspot tile $(x \le 1)$: $f_{loc}(at_{x,y}, loc = \epsilon) = 1$

Sensor Model and Observations

A sensor model $\mathcal{M}_s = \langle X, Y, \Phi \rangle$

- X are the state variables.
- Y are the observable variables.
- Φ is the set of sensing functions $f_i : C_i \times Y_i \rightarrow [0, 1]$
 - exhaustive $(\bigcup_{c \in C_i} S_c = S)$, and
 - exclusive $(S_c \cap S_{c'} = \emptyset, \forall c, c' \in C_i)$

An observation $o = \langle Y_1 = w_1, \dots, Y_{|Y|} = w_{|Y|} \rangle$ is a full assignment of Y.

An observation decoding problem is a triplet $D = \langle \mathcal{M}_p, \mathcal{M}_s, O \rangle$ where:

- $\mathcal{M}_p = \langle X, A \rangle$ is a planning model,
- $\mathcal{M}_{s} = \langle X, Y, \Phi
 angle$ is a sensor model, and
- $O = \langle o_0, o_1, \dots, o_m \rangle$ is an input observation sequence.

The solution to $D = \langle \mathcal{M}_p, \mathcal{M}_s, O \rangle$ is the **most likely trajectory** τ^* defined as

$$\tau^* = \arg\max_{\tau \in \mathcal{T}} P(O, \tau | \mathcal{M}_p, \mathcal{M}_s),$$

Synthesis and Sensing Probabilities

$$\tau^* = \arg \max_{\tau \in \mathcal{T}} P(O, \tau | \mathcal{M}_{\rho}, \mathcal{M}_{s}) = \arg \max_{\tau \in \mathcal{T}} P(\tau | \mathcal{M}_{\rho}) P(O | \tau, \mathcal{M}_{s})$$

Synthesis probability

The probability of generating τ with \mathcal{M}_p :

$$P(\tau|\mathcal{M}_p) = P(s_0) \prod_{i=1}^{|\tau|} P(s_i|s_{i-1}, \mathcal{M}_p), \qquad (1)$$

Sensing probability

The probability of perceiving O from τ :

$$P(O|\tau, \mathcal{M}_s) = \prod_{i=1}^{|\tau|} P(o_i|s_i, \mathcal{M}_s), \qquad (2)$$

Observation decoding via Classical Planning

Compilation

From probability maximization to cost minimization:

$$\tau^* = \arg\max_{\tau \in \mathcal{T}} P(O, \tau | \mathcal{M}_{p}, \mathcal{M}_{s}) \, \rightarrow \, \tau^* = \arg\min_{\tau \in \mathcal{T}} - \log P(O, \tau | \mathcal{M}_{p}, \mathcal{M}_{s})$$

Compile $D = \langle \mathcal{M}_p, \mathcal{M}_s, O \rangle$ to a planning problem $P' = \langle F', A', I', G' \rangle$ such that $A' = A_t \cup A_e$ where:

- transition actions A_t are the cost-normalized versions of A
- sensing actions A_e to process an observation

Compilation

From probability maximization to cost minimization:

$$\tau^* = \arg\max_{\tau \in \mathcal{T}} P(O, \tau | \mathcal{M}_{p}, \mathcal{M}_{s}) \, \rightarrow \, \tau^* = \arg\min_{\tau \in \mathcal{T}} - \log P(O, \tau | \mathcal{M}_{p}, \mathcal{M}_{s})$$

Compile $D = \langle \mathcal{M}_p, \mathcal{M}_s, O \rangle$ to a planning problem $P' = \langle F', A', I', G' \rangle$

If π is a solution plan for P' then:

- $cost(\pi_t) = -\log P(\tau^{\pi}|\mathcal{M}_p).$
- $cost(\pi_e) = -\log P(O|\tau^{\pi}, \mathcal{M}_p).$
- $cost(\pi) = -\log P(O, \tau^{\pi}|\mathcal{M}_{p}, \mathcal{M}_{s}).$

Sensing Actions

 A_e contains a sense_k action for each observation $o_k \in O$

- Implement an acceptor automaton for trajectories that satisfy the observation.
- Accumulate $-\log P(O|\tau, \mathcal{M}_s)$

 $guard(sense_k) := P(o_k | s_i, M_s) > 0$ $reset(sense_k) := x^+ = x - \log P(o_k | s_i, M_s)$

$$O = (\langle \textit{loc} = (0,2)
angle, \langle \textit{loc} = (1,2)
angle, \langle \textit{loc} = (4,2)
angle$$

```
\begin{array}{ll} {\rm pre(sense_2)} & sensed_1 \\ {\rm eff(sense_2)} & sensed_2 \wedge \\ & {\rm when} \ (at \ x1 \ y2) \\ & {\rm increase} \ total\_cost \ -log \ (0.9) \\ & {\rm when} \ (not \ (at \ x1 \ y2)) \\ & {\rm (deadend)} \end{array}
```

Experimental Evaluation

Evaluate the effectiveness of using a sensor model for decoding.

- OD_N : optimal plan that satisfies the observation.
- OD_S : the approach presented here.

Metric: plan diversity¹

$$\delta_{\alpha}(\pi_i, \pi_j) = \frac{|S_i - S_j|}{|S_i| + |S_j|} + \frac{|S_j - S_i|}{|S_i| + |S_j|}$$

¹" Domain independent approaches for finding diverse plans" (Srivastava et al., 2007).

Results

Domain	Н	L	OD_S	OD_N
Blindspots	100	0	0.03	0.18
	80	20	0.08	0.20
	60	40	0.11	0.17
Intrusion	100	0	0	0.58
	80	20	0.07	0.18
	60	40	0.13	0.14
Blocks 2h	100	0	0	0.34
	80	20	0.05	0.27
	60	40	0.07	0.26
Office	100	0	0	0.58
	80	20	0.23	0.38
	60	40	0.16	0.23

H: Observability of the high observability region L: Observability of the low observability region $OD_S : \delta_{\alpha}(\pi, \pi_S)$ $OD_N : \delta_{\alpha}(\pi, \pi_N)$

Conclusions

- Formalization of the decoding problem within a probabilistic framework.
- Extension of decoding to support sensor models.
- Unifying probabilistic framework (future work).