Stochastic Fairness and Language-Theoretic Fairness in Planning in Nondeterministic Domains

Benjamin Aminof, Giuseppe De Giacomo, Sasha Rubin

ICAPS2020
Nondeterministic environments capture uncertainty that an agent has at planning time about the effects of its actions. Fairness conditions restrict the possible nondeterminism.

Stochastic fairness: the goal should be achieved with probability 1.

Language-theoretic fairness: the goal should be achieved on fair traces. E.g., **state-action fairness:** repeating an action in a state infinitely often results in all possible effects.
Purpose of the paper

Study the relationship between Stochastic Fairness and State-action Fairness

- For reachability goals, the two notions coincide (see discussion in D’Ippolito et al JAIR 2018)
- For temporally extended goals (LTL/LTLf), the two notions differ ...
- Neglecting to observe this difference has resulted in incorrect algorithms, e.g., IJCAI 13,18,19.
Goal: eventually reach left, and two steps afterwards left again.

- There is only one policy (always do action a)
- Under stochastic fairness, the environment essentially flips a coin (of fixed, but unknown bias)
 - so the goal is achieved with probability 1.
- Under state-action fairness, the environment infinitely often goes left and infinitely often goes right
 - so the goal is not achieved on the fair trace that alternates in the middle.
Main computational problem

How to solve planning for LTL/LTLf goals under fairness?

- There are algorithms for solving stochastic fairness.
- What about state-action fairness? this paper.
Automata-theoretic Approach

Reduce planning on \((D, \psi)\) to planning on product domain which synchronously simulates the original domain \(D\) and a deterministic automaton \(A_\psi\) for the goal formula, and new goal induced by the acceptance condition of \(A_\psi\).

How to make this work for fair planning problems?

- Works for stochastic fairness (Vardi FOCS 1985).
 - Intuitively, stochastic-fairness is preserved under products
- But state-action fairness is not preserved under products!
 - Intuitively, the reason is that there may be fair traces in \(D\) that do not induce any fair trace in the product.
- Instead, reduce it to a non-fair problem \((D, \varphi_{D,fair} \rightarrow \psi)\).
 - Explicitly express fairness as part of the goal.
 - Take care to get optimal algorithm!
 - Use Rabin acceptance condition.
Theorem

The complexity of solving planning with LTL/LTLf goals assuming state-action fairness is 2^{EXPTIME}-complete; moreover,

- Goal complexity is 2^{EXPTIME}-complete.
- Domain complexity is in NEXPTIME (it is known to be EXPTIME-hard).

Lower-bounds

Inspired by Courcoubetis-Yannakakis (JACM 1995).

- Also works for no-fairness, and stochastic-fairness.
Summary

Stochastic fairness and state-action fairness differ.

- Virtually all work in nondeterministic Planning assumes stochastic fairness:
 - practical algorithms for reachability goals, FOND strong-cyclic planners (NDP, FIP, myND, Gamer, PRP, GRENADE, FOND-SAT),
 - simple algorithm for LTLf goals (cf. IJCAI 2018),
 - Principle: nondeterminism is resolved by rolling a dice.

- State-action fairness:
 - No practical algorithms yet for LTL/LTLf goals.
 - Used because it is a language-theoretic alternative to stochastic fairness for reachability goals
 - Is there a principle behind it? Or is it just an ad-hoc fairness condition?