Abubakr Alabbasi, Arnob Ghosh, Vaneet Aggarwal |
PosterID:
70
PDF
Slides
Poster
|
The success of modern ride-sharing platforms crucially depends on the profit of the ride-sharing fleet operating companies, and how efficiently the resources are managed. Further, ride-sharing allows sharing costs and, hence, reduces the congestion and emission by making better use of vehicle capacities. In this work, we develop a distributed model-free, DeepPool, that uses deep Q-network (DQN) techniques to learn optimal dispatch policies by interacting with the environment. Further, DeepPool efficiently incorporates travel demand statistics and deep learning models to manage dispatching vehicles for improved ride-sharing services. Using real-world dataset of taxi trip records in New York City, DeepPool performs better than other strategies, proposed in the literature, that do not consider ride sharing or do not dispatch the vehicles to regions where the future demand is anticipated. Finally, DeepPool can adapt rapidly to dynamic environments since it is implemented in a distributed manner in which each vehicle solves its own DQN individually without coordination |
Canb | 10/29/2020, 10:00 – 11:00 |
10/31/2020, 03:00 – 04:00 |
Paris | 10/29/2020, 00:00 – 01:00 |
10/30/2020, 17:00 – 18:00 |
NYC | 10/28/2020, 19:00 – 20:00 |
10/30/2020, 12:00 – 13:00 |
LA | 10/28/2020, 16:00 – 17:00 |
10/30/2020, 09:00 – 10:00 |
Symbolic Plans as High-Level Instructions for Reinforcement Learning
León Illanes, Xi Yan, Rodrigo Toro Icarte, Sheila A. McIlraith
DeepPool: Distributed Model-Free Algorithm for Ride-Sharing Using Deep Reinforcement Learning
Abubakr Alabbasi, Arnob Ghosh, Vaneet Aggarwal
Integrating Acting, Planning, and Learning in Hierarchical Operational Models
Sunandita Patra, James Mason, Amit Kumar, Malik Ghallab, Paolo Traverso, Dana Nau
Exploring Context-Free Languages via Planning: The Case for Automating Machine Learning
Michael Katz, Parikshit Ram, Shirin Sohrabi, Octavian Udrea